dr. ing. Otilia Cotuna, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara - REVISTA FERMIERULUI
dr. ing. Otilia Cotuna, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

dr. ing. Otilia Cotuna, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

Miercuri, 27 Martie 2024 23:37

Făinarea cerealelor păioase

Blumeria graminis produce boala numită „făinare”. Acest fung este prezent în culturile de cereale an de an, cu frecvențe și intensități diferite de atac, în funcție de condițiile climatice. În toamnele și iernile blânde, în culturile de cereale păioase sunt observate simptomele tipice ale patogenului. În acest articol veți găsi informații utile despre biologia patogenului, simptomatologia, pagubele produse și strategia de combatere.

În culturile de grâu și orz din județul Timiș (cu siguranță și în alte zone din țară), fungul Blumeria graminis își face simțită prezența. Condițiile climatice înregistrate în luna martie 2024 (vreme răcoroasă și umedă) favorizează patogenia.

În culturile de grâu și orz verificate, am observat miceliile albe, bumbăcoase în zona bazei tulpinii, pe teaca frunzelor și pe frunzele bazale. Prin comparație cu grâul, la unele soiuri de orz simptomele pot fi observate pe frunzele noi.

Recomand verificarea culturilor și a prognozei climatice.

Făinare alături de pătare reticulară

Făinare alături de pătare reticulară

În cazul în care vremea răcoroasă și umedă se menține patogenul va urca în etajele superioare ale plantelor, pe măsură ce acestea se dezvoltă. Temperaturile ridicate și lipsa precipitațiilor opresc evoluția făinării cerealelor păioase.

La apariția epidemiilor și chiar a pandemiilor de făinare concură factorii tehnologici (monocultura sau absenţa rotaţiei, densitatea mare a plantelor, irigarea, excesul sau carenţa elementelor nutritive, întârzierea semănatului), precum și vremea răcoroasă și umedă.

 

Importanța economică a bolii

 

Făinarea cerealelor păioase face parte dintre principalii patogeni prezenți an de an în țara noastră. La nivel mondial, boala este larg răspândită pe toate continentele, dar mai ales în zonele umede. Pierderile de producție sunt în strânsă corelație cu condițiile climatice, putând ajunge chiar la 45%. Pe lângă pierderile cantitative, fungul poate afecta și calitatea recoltei (însușirile de panificație) - [Zeller et al., 2002]. În condiții de infecții severe la spic, Blumeria graminis poate afecta coacerea grâului și calitatea morăritului [Everts et al., 2001].

Este important ca frunza stindard să fie liberă de patogen, mai ales la soiurile sensibile. Dacă patogenul cuprinde această frunză (esențială pentru producția finală), pagubele în producție pot ajunge la 25%. La soiurile rezistente pierderile înregistrate pot fi cuprinse între 5 - 8%, atunci când făinarea ajunge la frunza stindard (steag).

 

Recunoașterea simptomelor

 

Simptomele produse de Blumeria graminis la orz și grâu sunt foarte ușor de recunoscut, neputând fi confundate cu simptomele produse de alți patogeni foliari. Atacă toate organele aeriene ale plantelor (frunze, teci, tulpini, spice, ariste).

Tabloul simptomatic al bolii:

  • După realizarea infecției, pe frunzele bazale apar pete clorotice sau galbene;

  • La suprafața petelor de pe frunze, pe măsură ce patogenul evoluează, se formează aglomerări de micelii mici, albe și cu aspect pâslos. Miceliile albe pot fi izolate sau se pot uni;

  • În condiții favorabile, pete acoperite de micelii vor apărea și pe frunzele din etajele superioare, pe tecile frunzelor, pe tulpini (miceliile le cuprind de jur împrejur ca un manșon) și în final pe spice;

  • Miceliile albe de pe organele atacate își vor schimba culoarea (de la alb la gălbui) pe măsură ce boala evoluează, căpătând aspect prăfos, făinos. Este semn că ciuperca sporulează (se formează lanțurile de conidii sau oidii). Datorită aspectului făinos, boala a primit numele popular de „făinare”;

  • Pe măsură ce plantele devin mature, aglomerările de hife miceliene devin gri şi apoi uşor brune la culoare. În această etapă pot fi observate în micelii corpușoare mici, negre, asemănătoare cu boabele de piper (peritecii sau cleistotecii cu asce şi ascospori). Formarea cleistoteciilor reprezintă sporogeneza telomorfă sau sexuată a ciupercii sau „faza galben - roşcată”;

  • Sub pâsla miceliană, uşor desprinsă cu degetele mâinilor, ţesuturile plantelor sunt brune, necrotice sau moarte [Hatman et al., 1989; Eliade, 1990; Lipps, 1996; Baicu et Seşan, 1996; Popescu, 1998, 2005].

Micelii albe pe teaca frunzei

Micelii albe pe teaca frunzei

În condiții favorabile, la soiurile sensibile și în zonele unde sunt prezente patotipuri cu virulență ridicată, manifestarea la exteriorul plantelor, specifică ciupercii Blumeria graminis, devine severă, amplă, adică ia caracter de masă sau de epidemie şi chiar de pandemie [Prescott et al., 1986; Popescu, 1998; Bissonette, 2002].

 

Supraviețuirea patogenului peste iarnă

 

Fungul iernează în anotimpul rece sub formă de cleistotecii pe samulastra de grâu și orz infectat. Pe lângă cleistotecii, patogenul poate ierna și sub formă de micelii pe plantele de grâu şi orz, putând produce conidii ce pot fi responsabile de infecțiile inițiale. Iernarea şi perpetuarea de la un an la altul a fost şi este studiată de diferiţi cercetători, dar ca şi alte probleme şi în aceasta sunt multe lucruri neelucidate sau controversate.

 

Realizarea infecțiilor

 

Infecțiile cu Blumeria graminis pot apărea încă din toamnă dacă vremea permite. Uneori, în iernile blânde se pot observa micelii albe pe frunzele tinerelor plăntuțe. În toamna 2023 și iarna 2024, în zona de vest a țării au fost observate infecții la grâu și orz.

Infecţiile de toamnă constituie sursa principală de răspândire a bolii, miceliul rezistând peste iarnă [Hulea et al., 1975; Hatman et al., 1989; Popescu, 1998; Bissonnette, 2002].

Primăvara, primele infecții sunt produse de ascosporii eliberați din ascele aflate în cleistotecii, cât și de conidiile produse de miceliile care iernează. Cleistoteciile se formează pe frunze, pe tulpini şi teci (iernează pe acestea), iar în primăvara următoare ascosporii eliberați produc infecţiile primare [Sandu-Ville, 1967; Eliade, 1990; Davis et al., 2002]. După Eliade (1990), la Blumeria graminis pe Triticum vulgare, cleistoteciile se formează din abundenţă şi de obicei în fiecare an, în condiţiile din ţara noastră.

Infecțiile secundare în sezonul de vegetație sunt produse în mod repetat de conidiile care se formează la suprafața miceliilor când ciuperca sporulează (sporulare asexuată). Conidiile sunt purtate de vânt pentru ciclul secundar al bolii la intervale de zece zile.

 

Condiții climatice favorabile infecțiilor

 

Factorii de mediu contează cel mai mult în realizarea infecțiilor, care este în strânsă corelație cu următorii parametri climatici:

  • Temperatura. Fungul Blumeria graminis, realizează infecţia cerealelor şi își manifestă patogenitatea în limite largi de temperatură. Cu toate acestea, ciuperca este virulentă în condiții de răcoare. Asta înseamnă că preferă temperaturile cuprinse între 17 - 220C [Prescott et al., 1986; Williams et Littlefield, 1995] sau 15 - 250C [Kochourek et Vechet, 1984; Bailey et al., 1995; Lipps, 1996]. Pe măsură ce temperaturile trec de 250C, patogenul nu mai infectează;

  • Umiditatea (roua, precipitațiile, umiditatea relativă a aerului). Umiditatea relativă a aerului şi precipitaţiile interferează pozitiv cu gradul de atac al ciupercii, dar cu o intensitate redusă la jumătate faţă de rouă. S-a constatat că ciuperca poate fi mai agresivă la valori mai scăzute ale umidității (37 - 56%) decât la o atmosferă cu hidroscopicitate de 79 - 97% (Sandu-Ville, 1967; Kocourek et Vechet, 1984; Eliade, 1990; Yang et al., 1992; Friedrich, 1995 a şi b; Deacon, 1997, 2006; Chet, 2003; Cotuna et Popescu, 2005b). Alți autori arată că făinarea poate fi puternic extensivă atunci când umiditatea relativă este cuprinsă între 85% și 100% (în prezența sau lipsa ploilor) - [Kochourek et Vechet, 1984; Prescott et al., 1986; Bailey et al., 1995; Williams et Littlefield, 1995; Lipps, 1996]. Ploile puternice nu sunt favorabile producerii de spori sau creşterii miceliului pe suprafaţa frunzelor [Evans, 1997; Chet, 2003];

  • Lumina. Însuşirile de patogenitate ale ciupercii sunt influenţate şi de lumină şi de întuneric. La întuneric lanţurile de oidii sunt mai lungi, au vitalitate scăzută şi o slabă putere de infecţiozitate datorită conţinutului scăzut de carbohidraţi [Sandu-Ville, 1967; Kocourek et Vechet, 1984; Eliade, 1990];

  • Nebulozitatea de 3 - 6 este la limita semnificaţiei [Deacon, 1997, 2006; Chet, 2003; Cotuna et Popescu, 2005b];

  • Viteza vântului este importantă în diseminarea patogenului în interiorul plantelor și la distanțe mai mari [Eliade, 1990; Cotuna et Popescu, 2005b].

 

Managementul integrat al făinării cerealelor

 

Făinarea cerealelor păioase poate fi combătută prin utilizarea echilibrată a măsurilor profilactice, chimice și biologice. În România, de regulă patogenul nu pune probleme decât în anii extrem de favorabili infecțiilor și doar atunci când infecția ajunge la spic putem discuta de daune.

Miceliu de culoare cenușie (mai vechi) alături de rugina (Puccinia hordei)

Miceliu de culoare cenușie mai vechi alături de rugina Puccinia hordei

Măsuri profilactice

Aceste măsuri au rol important în prevenirea făinării la grâu, dar și la alte cereale și constau în: respectarea rotaţiei culturilor; executarea corectă a lucrărilor solului; semănatul la date şi densităţi optime; folosirea soiurilor rezistente cu productivitate ridicată; utilizarea raţională a fertilizării; distrugerea samulastrei; irigarea judicioasă acolo unde este cazul [Hatman et al., 1986; Iacob, 2003].

Măsurile de prevenție enumerate pot ține departe boala. Pe de altă parte, sunt cele mai ieftine.

Măsuri chimice

Combaterea chimică trebuie să se facă la avertizare, după cum urmează:

  • După înfrățit când pe ultimele trei frunze sunt peste 25 pete pâsloase;

  • Înainte de înflorit când pe frunza stindard sunt peste 25 pete pâsloase (PED-ul sau pragul economic de dăunare) și factorii climatici (temperatură, umiditate, ploaie, ceaţă, rouă) continuă să se întrunească în limite optime pentru dezvoltarea bolii [Popescu, 1998].

De reținut! Stropirile aplicate la faza de un nod (stadiu de creştere GS 31) au controlat de timpuriu făinarea. Cel mai bun control a fost asociat cu stropirile aplicate la emergerea frunzei stindard (GS 39 – 43) sau apariţia spicului (GS 59), stadii dezvoltate înainte de creşterea atacului. Stropirile aplicate în fenofazele amintite au determinat o bună protecţie a spicului [Harwick et al., 1994].

420178045 122148346472088675 148099096256288244 n

Fungicidele omologate în România pentru combaterea făinării cerealelor (dar și pentru alte boli ale cerealelor) sunt: azoxistrobin; azoxistrobin + protioconazol; azoxistrobin + difenoconazol + tebuconazol; protioconazol + tebuconazol; protioconazol + spiroxamină + trifloxistrobin; protioconazol + spiroxamină + tebuconazol; bixafen + tebuconazol; difenoconazol; metrafenonă; ciprodinil; piriofenonă; fluxapyroxad; fenpropidin; fluxapyroxad + mefentrifluconazol; mefentrifluconazol + piraclostrobin; mefentrifluconazol; metconazol; protioconazol; tebuconazol; boscalid + kresoxim metil; difenoconazol + fluxapiroxad; proquinazid; proquinazid + protioconazol; kresoxim - metil + mefentrifluconazol [după aplicația PESTICIDE 2.24.3.1, 2024].

Măsuri biologice

În culturile de cereale, măsurile biologice aproape că nu există. Având în vedere contextul actual (multe pesticide sunt retrase) există interes la nivel mondial pentru mai mulți agenți biologici care ar putea fi utilizați în combaterea făinării cerealelor. Aceștia sunt: Bacillus subtilis, B. chitinospora, B. pumilus, Pseudomonas fluorescens, Rhodotaula sp. (Xiaoxi & Wenhong, 2011; Shahin et al., 2019).

Lanț de conidii de Blumeria graminis la microscop

Lanț de conidii de Blumeria graminis la microscop

 

Bibliografie

Baicu T., Seşan Tatiana Eugenia, 1996 – Fitopatologie agricolă, Ed. Ceres Bucureşti, 315, p. 137 – 139;
Bailey J. E., Jarrett R., Leath S., 1995 – Disease Identification North Carolina Cooperative Extension, Small Grain Production Guide 7, 1995.
Bissonnette Suzanne, 2002 – Powdery mildew of wheat. The Pest Management and Crop Development Bulletin.
Chen - Xiaoxi, Liu Wenhong, 2011 - Potent antagonistic activity of newly isolated biological control Bacillus subtilis and novel antibiotic against Erysiphe graminis f. sp. tritici, Journal of Medicinal Plants Research, Vol. 5(10), pp. 2011 - 2014, Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals, accesat la data 18.04.2022.
Chet L., 2003 – Development of powdery mildew and leaf rust epidemics in winter wheat cultivars: Plant soil Environ, 49 (10): 439 – 442.
Cotuna Otilia, Popescu G., 2005b - Researches concerning the sexual incidence of Blumeria graminis (DC) Speer in different biotrophic related with the climatic factors. 5th Intern. Conference, Univ.of Miskolc, Hungary, 14 - 20 aug. 2005 (Agriculture), 43 - 48.
Davis R. M., Davis U. C., Jackson L. F., 2002 – Small grains powdery mildew, UCIPM Pest Management Guidelines: Small Graines Disease UC ANR Publication 3466.
Deacon J. W., 2006 – Fungal biology, Blackwell Publishing Ltd, 280 - 307.
Eliade Eugeania, 1990 – Monografia erysiphaceelor din România, Bucureşti, 573, p. 166 – 179.
Everts K. L., Leath S., Finney P. L., 2001 - Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis.,85: 423 – 429.
Friedrich S., 1995 – Calculation of conidial dispersal of Erysiphe graminis whithin naturally infected plant canopies using hourly meteorological input parameters. Zeitschrift für Pflanzen krankheiten und Pflanzenschutz, 1995, 102: 4, p. 337 - 347.
Friedrich S., 1995 – Modelling infection probability of powdery mildew in winter wheat by meteorological input variables. Zeitschrift für Pflanzenkranken heiten und Pflanzenschutz, 1995, 102: 4, 354 - 365.
Harwick N. V., Jenkins J. E. E., Collins B., Groves S. J., 1994 – Powdery mildew (Erysiphe graminis) on winter wheat: control whit fungicides and the effects on the yield, Crop Protection 1994, 13: 2, p. 93 - 98.
Hatman M., Bobeş I., Lazăr Al., Gheorghieş C., Glodeanu C., Severin V., Tuşa Corina, Popescu I., Vonica I., 1989 – Fitopatologie, Edit. Did. şi Ped. Bucureşti, p. 185 - 188.
Hulea Ana, Paulian F., Comeş I., Hatman M., Peiu M., Popov C., 1975 – Bolile şi dăunătorii cerealelor. Edit. Ceres, Bucureşti, p. 27 – 30.
Iacob Viorica, 2003 – Fitopatologie, Ed. Ion Ionescu de la Brad, Iaşi, p. 170.
Kocourek F., Vechet L., 1984 - Uber ein temperaturbhangiges Modell zur Vorhersage der Entwicklungsgeschwindikeit bei Erysiphe graminis f. sp. tritici. Anz. Schadlinskd. Pfl. Um.,57:15 - 18.
Lipps Patrick E., 1996 – Powdery mildew of wheat. The Ohio State University Extension. Plant Pathology.
Prescott J. M., Burnett P. A., Saari E. E., 1986 – Wheat Diseases and Pests, A Guide for Field identification, CMMYT. Mexico.
Popescu G., 1998 – Fitopatologie, Edit. Mirton Timişoara, 1998, 190, p. 3 – 4.
Popescu G., 2005 – Tratat de Patologia plantelor, vol. II, agricultură, Editura Eurobit, 350 p..
Shahin A. A., Ashmavy M. A., Esmail M. S., El - Moghazy, 2019 - Biocontrol of wheat powdery mildew disease under field conditions in Egypt, Plant Protection and Pathology Research, Zagazig J. Agric. Res., vol. 46, No (6B), 2255 - 2270.
Sandu Ville C., 1967 – Ciupercile Erysiphaceae din România. Ed. Acad. RSR, Bucureşti, 358 p.
Trevathan L. E., 2001 – Diseases of Crops, Departament of Entomology and Plant Pathology, Missisipii State University. EPP, 4214 – 6214.
Wiliams E., Littlefield L. J., 1995 – Major Foliar Fungal Diseases of Wheat in Oklahoma. Oklahoma Cooperative Extension Service. OSU Extension Facts, F - 7661.
Yang J. S., Ge Q. L., Wu W., Wu Y. S., 1992 – On the infection cycle of Blumeria graminis D.C. Speer in Northeastern China. Acta Phytopatologica Sinica, 1992, 22: 1. P. 35 - 40.
Zeller F. J., Petrova Nedialka, Spetsov Penko, Hsam S. L. K., 2002 - Identification of powdery mildew and leaf rust resistance genes, in common wheat (Triticum aestivum L. em. Thell.) cultivars grown in Bulgaria and Russia. Published in Issue, nr. 122, 32 - 35.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Aducem în atenția fermierilor informații importante despre fungul Erysiphe cruciferarum care produce făinarea cruciferelor. Acest fung a fost prezent în zona de vest a României și în toamna 2023. De fapt, a și iernat în aceste culturi.

Condițiile climatice din acest început de primăvară sunt favorabile dezvoltării patogenului Erysiphe cruciferarum, care este prezent de două săptămâni în culturile de rapiță. Informațiile din materialul de față pot ajuta fermierii să prevină infecțiile sau să intervină la momentul optim.

 

Importanța economică a fungului, simptome și daune

 

La nivel mondial, în zonele unde se cultivă intensiv rapița, pe fondul rotațiilor scurte și a condițiilor climatice în schimbare, Erysiphe cruciferarum este considerat un patogen cu importanță economică ridicată [Runno - Paurson et al., 2021]. În România, patogenul apare sporadic și rareori au fost raportate pierderi în producție.

Simptome produse de Erysiphe cruciferarum pe frunze de rapiță, martie 2024

Simptome produse de Erysiphe cruciferarum pe frunze de rapiță în luna martie 2024

Fungul Erysiphe cruciferarum produce pagube în producție în anii în care au loc infecții la nivelul silicvelor și frunzele bolnave cad de pe plante. De regulă, cele mai severe infecții apar atunci când vremea este umedă (umiditatea relativă între 50 - 95%), iar temperaturile sunt cuprinse între 15 - 200C. În astfel de condiții climatice, organele atacate sunt acoperite de un miceliu dens, alb, pulverulent, făinos. O astfel de situație s-a înregistrat în județul Timiș în anul 2019, când făinarea a cuprins toate organele plantei, inclusiv silicvele, producând daune semnificative. Însă, de cele mai multe ori, făinarea nu este dăunătoare rapiței.

Simptomele tipice pot fi recunoscute foarte ușor, deoarece la suprafața organelor atacate apar colonii miceliene de culoare albă, difuze. Miceliile albe pot fi observate pe ambele părți ale frunzelor, de jur împrejurul tulpinilor, lăstarilor, silicvelor. Primele simptome apar pe frunzele bătrâne. Frunzele acoperite de micelii se vor usca. În cazurile grave, frunzele cad la sol (defoliere prematură). Defolierea prematură duce la pierderi în producție.

Micelii albe pe frunză de rapiță. Foto realizată la sfârșit de februarie 2024 

Foto sfârșit februarie 2024. Micelii albe pe frunză de rapiță

Plantele de rapiță trebuie controlate pe întreaga perioadă de vegetație, mai ales în primăverile umede. Pe măsură ce patogenul se dezvoltă, miceliile albe sau așa numitele pete pâsloase devin mai dense. Aspectul făinos (prăfos sau pulverulent) apare atunci când miceliul sporulează. Față de alte făinări unde sporii (conidiile) sunt înlănțuiți, la Erysiphe cruciferarum conidiile nu sunt înlănțuite [Docea & Severin, 1990]. Pe măsură ce petele păsloase îmbătrânesc, capătă culoare cenușie și pot fi observate corpurile fructifere numite cleistotecii. Infecțiile primare sunt realizate de către ascosporii din ascele protejate de cleistotecie. Infecțiile secundare sunt făcute de către conidii.

La hibrizii toleranți sau rezistenți poate fi observată o reacție de apărare (am observat și eu acest aspect). La acești hibrizi, miceliile (pete pâsloase) sunt de dimensiuni mai mici și au culoare cenușie albicioasă. Sub micelii, țesuturile au culoare negricioasă [Koike et al., 2007].

Micelii albe pe pețiol, martie 2024

Micelii albe pe pețiol. Martie 202

 

Biologia și epidemiologia patogenului

 

Este important ca fermierii să cunoască măcar câteva aspecte despre biologia și condițiile climatice preferate de acest patogen, astfel încât vor putea preveni din timp instalarea infecțiilor.

Erysiphe cruciferarum este un parazit obligatoriu, supraviețuind peste anotimpul rece pe resturile vegetale sau în sol sub formă de cleistotecii cu asce și ascospori. De asemenea, poate ierna și pe culturile de rapiță de toamnă, cât și pe samulastră (sub formă de micelii) [Koike et al., 2007]. Când condițiile de mediu sunt favorabile (temperaturi de 15 - 250C) cleistoteciile eliberează ascele care conțin ascospori, aceștia fiind responsabili de realizarea infecțiilor primare. Cu ajutorul vântului ei ajung pe suprafața țesuturilor vegetale, germinează și produc infecția. După realizarea infecțiilor primare, în miceliile albe, difuze care apar la suprafața organelor atacate se vor forma conidiile responsabile de realizarea infecțiilor secundare repetate. La sfârșitul perioadei de vegetație în pâsla miceliană se vor forma cleistoteciile, formă sub care fungul iernează [Schwartz & Gent, 2004].

Martie 2024

Foto martie 2024 2

Infecțiile pot fi severe atunci când temperaturile sunt cuprinse în intervalul 22-27°C, iar umiditatea relativă este scăzută în timpul zilei și ridicată în timpul nopții.

Erysiphe cruciferarum infectează buruienile (gama de plante gazdă este largă) trecând cu ușurință pe plantele cultivate. De aceea, culturile nu trebuie să fie îmburuienate.

 

Managementul integrat al făinării rapiței

 

Metodele profilactice sunt foarte importante în strategiile de combatere.

Fermierii ar trebui să fie atenți la următoarele măsuri:

  • Respectarea rotației - rotația de trei ani este indicată;

  • Eliminarea plantelor gazdă (ar trebui să prevină apariția bolii);

  • Cultivarea de hibrizi rezistenți;

  • Evitarea stresului cauzat de secetă;

  • Adunarea resturilor vegetale (în cazul unor infecții severe);

  • Fertilizarea echilibrată;

  • Executarea arăturilor adânci de toamnă în anii când infecțiile au fost masive [Docea & Severin, 1990].

Martie 2024

Foto martie 2024

Metodele chimice sunt predominante, din păcate. Tratamentele chimice se impun, mai ales atunci când infecțiile apar când silicvele sunt formate. În primăverile răcoroase și umede se recomandă efectuarea unui tratament preventiv.

Fungicidele omologate în România pentru combaterea acestui patogen sunt pe bază de: Tebuconazol; Protioconazol (se aplică preventiv, la apariția primelor simptome); Boscalid + metconazol (după APLICAȚIA PESTICIDE 2.24.2.2).

Respectați dozele, momentele optime de aplicare și timpii de pauză (care sunt destul de mari, între 35 - 56 zile).

Metode biologice

Combaterea acestui patogen cu ajutorul agenților biologici este de interes în prezent. Biofungicidul pe bază de Ampelomyces quisqualis (AQ10), o ciupercă antagonistă, poate fi utilizat cu succes în combaterea făinării rapiței. AQ10 se aplică ca tratament preventiv, nu curativ. AQ10 trebuie amestecat cu un ulei mineral sau cu un surfactant siliconic. Se recomandă ca tratamentele să fie făcute dimineața devreme sau seara târziu, iar plantele să fie acoperite complet de soluție. Această recomandare este valabilă pentru toți agenții biologici utilizați în combaterea bolilor și dăunătorilor. Momentul aplicării este foarte important deoarece de el depinde eficacitatea tratamentelor [Schwartz & Gent, 2015].

Martie 2024

Foto martie 2024 1

 

Bibliografie

1.Docea E., Severin V., 1990. Ghid pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, Întreprinderea poligrafică ”Oltenia”, 320 p.
2.Eve Runno-Paurson, Peeter Lääniste, Viacheslav Eremeev, Liina Edesi, Luule Metspalu, Astrid Kännaste & Ülo Niinemets, (2021). Powdery mildew (Erysiphe cruciferarum) evaluation on oilseed rape and alternative cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71:6, 443 - 452.
3.Koike, S. T., Gladders, P., Paulus, A. O. (2007). Vegetable Diseases: A Color Handbook. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA: Gulf Professional Publishing. p. 168. ISBN 0-12-373675-7.
4.Runno-Paurson Eve, Peeter Lääniste, Viacheslav Eremeev, Liina Edesi, Luule Metspalu, Astrid Kännaste & Ülo Niinemets, (2021). Powdery mildew (Erysiphe cruciferarum) evaluation on oilseed rape and alternative cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71:6, 443 - 452.
5. Schwartz, H. F., Gent, D. H. (December 31, 2004). "Canola & Mustard- Powdery Mildew" (PDF). Highplains IPM. Retrieved October 21, 2015.
 
La Stațiunea Didactică Timișoara - USVT. La 22 martie 2024 făinarea este prezentă pe frunzele bazale ale rapiței
 
Prin rapița de la Stațiunea Didactică Timișoara USVT. La 22.03.2024 făinarea este prezentă pe frunzele bazale

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Readuc în atenția pomicultorilor fungul Schizophyllum commune (patogen/saprofit) care este tot mai prezent în livezile de pomi fructiferi, în cele de nuc și chiar în plantațiile de paulownia. În articolul de față găsiți informații valoroase despre patografia, biologia, epidemiologia și combaterea acestui fung.

Fungul S. commune a fost raportat ca fiind prezent în lemnul mort la aproximativ 150 de genuri de plante. Ocazional a fost raportat și ca patogen la speciile lemnoase, dar și la oameni [Schmidt et Liese, 1980].

Takemoto et al. (2010) arată că fungul este recunoscut ca agent patogen ce produce putrezirea lemnului la pomii vii. În cartea sa despre bolile pomilor fructiferi, Togashi (1950), a descris S. commune ca fiind un agent patogen care pătrunde prin răni și duce la putrezirea lemnului la multe specii pomicole (semințoase, sâmburoase), putând produce pagube considerabile. Autorul arată că fungul este adesea semnalat la măr, piersic, cireș, cais.

419329396 122145555842088675 2984738256194862340 n

Despre acest fung am mai scris în trecut. Acum îl readuc în atenția dumneavoastră deoarece constat că el se extinde tot mai mult în livezile din România, fiind prezent mai mult la pomii tineri decât la cei bătrâni, aflați în declin (cum ar fi normal să fie). Bineînțeles că, prezența acestui fung la pomii tineri ar trebui să ne îngrijoreze deoarece aceștia vor intra în declin.

În luna februarie 2024 am efectuat controale fitosanitare în livezi tinere de nuc (5 ani și 11 ani) din Sibiu. Am constatat că nucii erau infectați cu fungi care produc cancere (acum lucrez la diagnostic). Pe zonele lezate, în crăpăturile scoarței de pe tulpini și ramuri erau prezenți carpoforii fungului Schizophyllum commune. În consecință, starea de sănătate a nucilor este grav afectată, la fel și vigoarea.

Carpofori de Schizophyllum commune pe trunchi de nuc

Carpofori de Schizophyllum commune pe trunchi de nuc

După nuc, la începutul lunii martie 2024 am verificat o plantație de paulownia în vârstă de 6 - 7 ani din vestul României. Arborii erau și ei infectați cu un patogen care produce cancer (în analiză pentru stabilire diagnostic). Atașat, pe zonele bolnave era fungul Schizophyllum commune, care va întregi procesul de putrezire al lemnului. Având în vedere că lemnul de paulownia este cultivat pentru cherestea, patogenii instalați vor deprecia calitatea lemnului.

Carpofori de Schizophyllum commune pe trunchi de paulownia

Carpofori de Schizophyllum commune pe trunchi de paulownia

Boala produsă de Schizophyllum commune poartă numele de „putregaiul alb” sau „putrezirea Schizophyllum” (în engleză „Schizophyllum rot”). Există autori care au numit boala „cancerul și declinul pomilor”, deoarece fungul are capacitatea de a putrezi lemnul. Din momentul în care pătrunde în tulpină, ciuperca nu mai poate fi controlată. Cu cât diametrul tulpinii este mai mic, pomii sau arborii infectați sunt sortiți pieirii, mai devreme sau mai tarziu.

Schizophyllum commune este considerat un fung saprofit ce are capacitatea de a descompune lemnul mort, dar poate provoca daune și copacilor slăbiți, la fel ca o ciupercă patogenă cu virulență slabă. Prin urmare, este considerat un parazit de rană sau de plagă care poate degrada lemnul pomilor (cambium/alburn rănit dar și duramenul expus). În general, ciuperca colonizează pomii stresați de căldură, arsuri solare, secetă, insecte sau răni majore, lemnul tăiat și căzut și părțile moarte ale copacilor vii. Putrezirea lemnului este de obicei o boală a copacilor bătrâni. În cazuri speciale, ciuperca poate infecta și pomii tineri. Când Schizophyllum commune infectează pomii tineri și foarte tineri, este semn că aceștia sunt debilitați din alte cauze. Patogenul este dificil de gestionat în livezile infectate.

420179441 122145555248088675 6165235263288786023 n

Atenție, Schyzophyllum commune produce boli la oameni.

S. commune este cel mai cunoscut agent de infecție umană dintre Basidiomycotine. Pe lângă faptul că este considerat un agent patogen al plantelor din ce în ce mai agresiv care provoacă putregaiul alb, s-a raportat recent că această ciupercă poate provoca boli grave: micoza bronhopulmonară alergică [Kamei et al., 1994], boală pulmonară cronică [Ciferri et al., 1956], meningită [Chavez – Batista et al., 1955], sinuzită [Kern et Uecker, 1986; Catalano et al., 1990; Rosenthal, 1992], alergii etc. Datorită adaptării extraordinare la climatul arid și rezistența la poluare, Schizophyllum commune s-a dovedit a fi cel mai agresiv și de succes invadator fungic universal al speciilor lemnoase, amenințând oamenii imunodeprimați și chiar pe cei sănătoși [Matavulj et al., 2013].

 

Recunoașterea simptomelor

 

Fungul se recunoaște foarte ușor datorită corpurilor fructifere (în formă de evantai și culoare albă, cenușie) prezente pe trunchiul și ramurile pomilor și/sau arborilor. Prezența carpoforilor indică faptul că scoarța și cambiul sunt moarte, iar ramurile sau tulpina sunt cel puțin parțial putrede. Deoarece degradarea cauzată de acest fung poate progresa rapid în tulpină, se presupune că, atunci când carpoforii sunt vizibili, o parte considerabilă a tulpinii ar putea fi putrezită. Prin urmare, tulpinile sau ramurile care prezintă fructificații ar trebui considerate cu un risc crescut de mortalitate [Luley et Kane, 2009].

418170749 122145555194088675 3274836943722886379 n

Pomii infectați au vigoarea scăzută, prezintă gome în țesuturile lemnoase, frunze mici, putând apărea chiar fenomene de defoliere prematură [Puterill, 1922]. Majoritatea pomilor infectați sunt de obicei deja slăbiți și prezintă simptome nespecifice de anomalie a coroanei, cum ar fi defolierea, regresia, producții mici.

Corpurile fructifere (carpoforii sau bazidiocarpii) au dimensiuni cuprinse între 1 - 6 cm lățime, formă de evantai când se formează pe părțile laterale ale pomului, neregulată uneori funcție de locul unde se formează. Carpoforii sunt acoperiți cu perișori și pot avea culoare albă, cenușie și chiar cafenie când îmbătrânesc, nu au tulpină, au consistență tare, pieloasă. Lamelele de pe suprafața inferioară (asemănătoare unor branhii) produc bazidiospori. Sporii au dimensiuni cuprinse între 3-4 x 1-1,5 μm, sunt cilindrici până la eliptici, netezi. Corpurile fructifere sunt necomestibile datorită dimensiunilor mici și consistenței pieloase, dură. Basidiosporii sunt dispersați abundent în aer și joacă un rol important în realizarea infecțiilor [James et Vilgalys, 2001].

417570022 122145555428088675 5065503735511788794 n

Pe timp de secetă, corpurile fructifere se usucă, dar au capacitatea de a se rehidrata în condiții de umiditate. Astfel, de deschid și se închid de mai multe ori pe parcursul unui sezon de creștere. Aceasta este o adaptare excelentă pentru un climat arid, cu ploi sporadice. Spre deosebire de alte ciuperci, miceliul trebuie să producă doar un set de corpi fructiferi pe an. Este o strategie excelentă pentru reproducerea fungică. Chiar și în timpul iernii putem găsi corpuri fructifere sporulante ale acestei ciuperci.

După Hemmi (1942), S. commune are capacitatea de a invada țesuturile vii ale plantelor lemnoase și de a le omorî treptat [Hemmi, 1942]. Încă din 1922, Putterill a realizat experimente de inoculare la migdal, cais și piersic și a raportat că fungul a manifestat patogenitate la cais și piersic. Tot el a raportat și prezența gomelor, cleiurilor în vasele și celulele lemnului bolnav. Partea putredă a lemnului se distinge clar de cea sănătoasă printr-o linie distinctă. Uneori, ciuperca poate popula țesuturile vii ale pomilor fără simptome vizibile [Nakazawa et Harada, 2002]. După Poole (1929), patogenul poate pătrunde ușor la merii infectați de bacteria Erwinia amylovora. De asemenea, poate însoți cancerele produse de Nectria sp., Botryosphaeria sp., Phomopsis sp., Valsa sp. etc.

 

Realizarea infecțiilor

 

Unii cercetători consideră S. commune parazit de plagă sau chiar saprofit, alții arată că fungul este de fapt un agent patogen al plantelor producând boala „putrezirea Schizophyllum” sau „Schizophyllum rot” (în engleză), la pomii vii. La sâmburoase poate produce pagube considerabile mai ales la pomii debili sau neîngrijiți [Togashi, 1950; Kishi, 1998].

De-a lungul timpului, ciuperca a fost recunoscută de către mulți cercetători ca fiind agent patogen de putrezire al pomilor fructiferi [Putterill, 1922; Bergdahl et French, 1985; Lacok, 1986; Oprea et al., 1994; Snieskiene et Juronis, 2001; Shimizu et al., 2008; Lahbib et al., 2016].

De obicei, Schizophyllum commune nu poate pătrunde într-o plantă sănătoasă. Un pom viu poate fi infectat doar dacă prezintă leziuni prin care ciuperca poate pătrunde. Cazuri excepționale au fost raportate la măr, unde ciuperca a pătruns totuși prin țesuturile tinere de la vârful tulpinii. De regulă, fungul pătrunde prin răni care lasă la vedere alburnul, cum ar fi: leziuni ce rămân în urma tăierilor, înghețurilor, arsurilor solare, grindinei, atacului agenților fitopatogeni și al dăunătorilor etc [Putterill, 1922; Snieškienė et Juronis, 2001; Ito, 1955; Nakazawa, N. & Harada, 2002].

Odată infecția realizată, fungul Schizophyllum commune descompune scoarța și cambiul copacilor după care trece în alburn, iar moartea pomilor este iminentă în astfel de situații. De cele mai multe ori se stabilește ușor pe scoarța și cambiul care sunt deja putrede din alte cauze. Din țesuturile moarte, cu ușurință va trece în scoarța sănătoasă și cambiul adiacent. Boala mai poartă numele de „putrezirea sevei” deoarece descompunerea are loc în alburn după care progresează spre centrul tulpinii. Totuși, această denumire este oarecum greșită, deoarece marea majoritatea ciupercilor de putrezire a sevei sunt capabile sau au capacitatea de a descompune și duramenul unui pom, odată ce alburnul a putrezit [Luley et Kane, 2009]. Se poate spune că, fungul acționează ca un organism care produce „cancer”, fiind capabil să descompună rapid lemnul. Sănătatea pomului pare a fi un factor important în limitarea răspândirii putregaiului sevei la țesuturile adiacente.

418990512 122145555788088675 4022987151810068069 n

 

Condiții necesare dezvoltării fungului

 

În zonele cu climat temperat, fungul are condiții foarte bune de dezvoltare [Vulinovic et al., 2018]. Numeroase studii arată că, factorii climatici au un rol important în creșterea incidenței atacului acestui fung. Astfel, temperaturile scăzute din timpul iernii, seceta din vară și umiditatea foarte ridicată susțin patogenia [Sinclair et al., 1987; Oprea et al., 1994; Snieškienė et Juronis, 2001]. Pe lângă acești factori, vigoarea scăzută a pomilor facilitează infectarea [Essig, 1922].

Plantație de paulownia

Plantație de paulownia

Deoarece este adaptat la condițiile aride și este rezistent la poluare, fungul S. commune s-a dovedit a fi cel mai agresiv invadator al speciilor lemnoase forestiere, pomicole, ornamentale etc. Pe lângă asta amenință persoanele imunocompromise, producând alergii, sinuzite, boli de plămâni [Vulinovic et al. 2018].

 

Managementul integrat al fungului

 

Fungul este încadrat în categoria de risc scăzut (zona galbenă) [31; 32]. Cu toate acestea, ciuperca poate afecta sănătatea și stabilitatea structurală a pomilor. Pomii infectați trebuie supuși monitorizării numai dacă ciuperca este asociată cu trunchiul principal sau cu ramurile de schelet ale copacilor.

Metode profilactice

Cel mai bun mod de a preveni „putrezirea Schizophyllum” este să menținem starea de sănătate a pomilor.

În acest sens trebuie respectate câteva reguli:

  • Minimizarea rănilor care rămân în urma tăierilor deoarece patogenul pătrunde prin răni. Rănile cauzate de tăieri, precum și cele cauzate de temperaturile scăzute, dar și arsurile solare ar putea servi cu ușurință drept porți de intrare pentru Schyzophylum commune. Se cunoaște că, fungul se atașează de scoarțe rănite, cancere de pe ramuri și tulpini. Odată stabilit pe copacii infectați, putrezirea localizată poate continua și deschide calea pentru infecții suplimentare cu alte ciuperci oportuniste de dezintegrare a lemnului;

  • Efectuarea tăierilor în perioada de repaus vegetativ și pe vreme uscată;

  • Identificarea pomilor infectați cu Schyzophillum commune și verificarea stării lemnului (dacă mai este lemn sănătos sau nu);

  • Păstrați vigoarea pomilor printr-o fertilizare adecvată și echilibrată. Aplicați îngrășăminte la mijlocul toamnei sau primăvara devreme;

  • Irigarea echilibrată, mai ales în timpul perioadelor secetoase, la fiecare 10 - 14 zile (dacă este vreme uscată și caldă pe o perioadă prelungită);

  • Pomii proaspăt plantați ar trebui protejați la intrarea în iarnă prin înfășurarea trunchiurilor cu hârtie Sisalkraft (specială pentru împachetarea pomilor înainte de iernat);

  • Evitarea rănirii inutile a scoarței în timpul lucrărilor din livadă. Rănile apărute trebuie tratate, badijonate cu substanțe ce conțin substanțe fungicide, deși de multe ori nu au nici un efect și sunt doar cosmetice. Mai indicată este netezirea și dezinfectarea rănilor cu alcool 70%;

  • Îndepărtarea ramurile și a pomilor grav deteriorați din livadă [Jha, 2020]. Alternativ, îndepărtarea părților infectate ar putea fi luată în considerare dacă ciuperca este observată pe ramuri de dimensiuni mici.

Se recomandă îngrijirea cu atenție a pomilor care suferă daune climatice pentru a preveni instalarea acestui fung, dar și a altor basidiomicotine de putrezire a lemului [Takemoto et al., 2010].

420223490 122145555734088675 7377608168927359737 n

Măsuri chimice

Fungicidele pot fi aplicate copacilor infectați cu această ciupercă ca măsură provizorie pentru a întârzia creșterea fungică. În realitate, deoarece ciuperca este în interiorul lemnului, nu există tratamente fungicide eficiente.

 

Bibliografie

[1] Barnard E. L., Smith J., Understanding Decay in Florida Trees - An expplanation and pictorial guide to some of the more common decay fungi observed on Florida Trees, 8 p., https://www.floridaisa.org/.../understandingDecay...
[2] Bergdahl, D. R. & French, D. W. (1985) Association of wood decay fungi with decline and mortality of apple trees in Minnesota. Plant Dis., 69, 887–890
[3] Castillo, G. & Demoulin, V. (1997) NaCl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol. Res., 101, 341–344
[4] Ciferri, R., Chavez Batista, A., Campos, S. (1956): Isolation of Schizophyllum commune from sputum. Atti Inst. Bot. Lab. Crittogam. Univ. Pavia 14:118 – 120.
[5] Chavez - Batista, A., Maia, J.A., Singer, R. (1955): Basidioneuromycosis on man. Anais Soc Biol Pernambuco 13:52 – 60.
[6] Catalano, P., Lawson, W., Bottone, E., Lebenger, J. (1990): Basidiomycetous (mushroom) infection of the maxillary sinus. Otolaryngol. Head Neck Surg. 102: 183– 185.
[7] Essig, F. M. (1922) The morphology, development, and economic aspects of Schizophyllum commune Fries. University of California Publications in Botany, 7, 447–498, plates 51–61.
[8] Hemmi, T. (1942) On some diseases of fruit trees in Manju region and North China (II). J. Plant Prot., 29, 66–71, plates 1–7 [In Japanese].
[9] Ito, K. (1955) Diseases of chestnut and their characteristics. In Chestnut in Japan, eds. Kajiura, M. & Ono, Y., Japanese Chestnut Council, Tokyo, Japan, 45–58 [In Japanese].
[10] James, T. Y. & Vilgalys, R. (2001) Abundance and diversity of Schizophyllum commune spore clouds in the Caribbean detected by selective sampling. Mol. Ecol., 10, 471–479.
[11] Jha S. K., 2020, Identification and management of heart-rot fungi,” Banko Janakari, vol. 30, no. 2, pp. 71–77, 2020.
[12] Kern, M. E. and Uecker, F. A. (1986): Maxillary sinus infection caused by the homoba-sidiomycetous fungus Schizophyllum commune. J Clin Microbiol, 23: 1001–1005.
[13] Kishi, K. (1998) Plant diseases in Japan. Zenkoku-NosonKyoiku Kyokai Publishing Co. Ltd., Tokyo, Japan [In Japanese].
[14] Lahbib A, Chattaoui M, Aydi N, Zaghouani H, Beldi O, Daami-Remadi M, Nasraoui B, 2016. First report of Schizophyllum commune associated with apple wood rot in Tunisia. New Disease Reports 34, 26. http://dx.doi.org/10.5197/j.2044-0588.2016.034.026.
[15] Lačok, P. (1986) Fungi and apricot cultures in Slovakia (Czechoslovakia) at present. Acta Horticulturae, 192, 205 – 212.
[16] Latham, A. J. (1970) Development of apple fruit rot and basidiocarp formation by Schizophyllum commune. Phytopathology, 60, 596–598.
[17] Matavulj Milan N., Svjetlana B. Lolić , Slobodanka B. Vujčić, Snežan a Milovac, Milana S. Novaković, Maja A. Karaman, 2013 - Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks, Jour. Nat. Sci., Matica Srpska Novi Sad, № 124, 367—377, 2013, DOI: 10.2298/ZMSPN1324367M.
[18] Milovac S., Škrbić B., Lolić S., Karaman M., Matavulj M., 2017, Distribucija teških metala u biotskom i abiotskom matriksu pored visokofrekventne saobraćajnice u Banjoj Luci. (Distribution of heavy metals in biotic and abiotic matrix along high-frequency road in the Banja Luka city. Proceedings of the Conference on 20 Anyversary of the Faculty of Sciences of the Banja Luka University (Republic of Srpska, Bosnia). 1: 29 – 40.
[19] Nakazawa, N. & Harada, Y. (2002) Growth inhibition of Valsa ceratosperma by fungal isolates from apple trees. Ann. Rept. Plant Prot. North Japan, 53, 109 – 111 [In Japanese].
[20] Oprea, M., Şesan, T. & Bălan, V. (1994) Schizophyllum commune – canker and dieback disease of apricot trees in orchards of southeastern Romania. Rev. Roum. Biol. – Biol. Végét., 39, 35 – 40.
[21] Poole, R. F. (1929) Sweet potatoes infected by Schizophyllum commune. J. Elisha Mitchell Sci. Soc., 45, 137–139, plates 7–9
[22] Putterill, V. A. (1922) The biology of Schizophyllum commune Fries with special reference to its parasitism. Union of South Africa, Dept. Agr., Sci. Bull., 25, 3–35
[23] Rosenthal, J., Katz, R., DuBois, D. B., Morrissey, A., Machica O., A., (1992): Chronic maxillary sinusitis associated with the mushroom Schizophyllum commune in a patient with AIDS. Clin. Infect. Dis. 14: 46 – 48.
[24] Sinclair, W. A., Lyon, H. H. & Johnson, W. T. (1987) Diseases of trees and shrubs. Cornell Univ. Pr., New York, USA
[25] Shimizu, J., Hayashi, Y. & Fukuda, K. (2008) Wood-rot disease on cherry trees along Koganei Cherry Street, a national cultural property. Landscape Res. J., 71, 865–868 [In Japanese with English summary]
[26] Schmidt O., Liese W., 1980. Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung 34: 6772.
[27] Snieškienė, V. & Juronis, V. (2001) Distribution of the fungus Schizophyllum commune Fr. in plantings of trees in the Kaunas city. Biologija, 3, 45–47
[28] Takemoto, S., Nakamura, H., Imamura, Y., and Shimane, T. (2010). Schizophyllum commune as a Ubiquitous Plant Parasite. Japan Agricultural Research Quarterly, 44(4),357-364.
[29] Togashi, K. (1950) Fruit tree pathology. Asakura, Tokyo, Japan [In Japanese].
[30] Vulinović Jelena N, Svjetlana B. Lolić, Slobodanka B. Vujčić, Milan N. Matavulj, 2018 - Schizophyllum commune – the dominant cause of trees decay in alleys and parks in the City of Novi Sad (Serbia), Biologia Serbica, 2018, 40(2): 26-33, DOI 10.5281/zenodo.2452495.
[31] ***Note on Common Wood Decay Fungi on Urban Trees of Hong Kong, Greening, Landscape and Tree Management Section, Development Bureau, The Government of the Hong Kong Special Administrative Region, 2015, 41 pag.
[32] ***Guidelines for Tree Risk Assessment and Management Arrangement on an Area Basis and on a Tree Basis’ issued by the Greening, Landscape and Tree Management Section, Development Bureau, available at www.trees.gov.hk.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Fungul Septoria tritici a fost prezent în culturile de grâu și în anul 2023, producând pagube serioase în unele zone din țară. În acest articol veți găsi informații utile despre biologia patogenului, patografia și strategia de combatere pentru a nu avea pagube în producție.

Condițiile climatice din prima decadă a lunii martie 2024 sunt foarte asemănătoare cu cele de anul trecut (aceeași perioadă) în zona de vest a țării și mai ales în județul Timiș. Ne aducem aminte că, septorioza frunzelor a făcut ravagii anul trecut prin culturile de grâu din Timiș și nu numai, deoarece a fost multă umiditate (septorioza este condiționată de umiditate). Ani la rând, septorioza a fost o boală a începutului de primăvară după care se oprea din evoluție deoarece nu mai avea umiditate. Rezerva de inocul din primăvara 2023 a dus la apariția acestui patogen în culturile de grâu încă din toamnă, când intensitatea și frecvența plantelor cu simptome a fost ridicată, pe fondul climatic favorabil (în Banat a plouat mult peste media multianuală care este de 600 mm/an). Iarna blândă a susținut infecțiile, conducând astfel la creșterea sursei de inocul pentru viitoarele infecții din primăvară.

420280309 122145163316088675 5317649878360495456 n

În această perioadă, în solele de grâu verificate, patogenul este prezent pe toate plantele (la soiurile sensibile mai ales). Umiditatea existentă (a plouat suficient) și temperaturile înregistrate susțin dezvoltarea acestui patogen, de aceea, dumneavoastră fermierii trebuie să fiți foarte atenți la culturi. În acest sens, recomand verificarea cu atenție a culturilor de grâu și aplicarea unui prim tratament dacă situația din teren impune asta (depășirea pragului economic de dăunare - PED). Primul tratament în culturile de cereale este bine să se facă în intervalul fenologic „începerea alungirii paiului - apariția frunzei stindard”, adică BBCH 30 - 39. În acest interval, în urma controalelor fitosanitare puteți alege momentul optim, funcție de nivelul infecției. Fungicidele trebuie alese cu mare atenție mai ales când vremea este umedă. Alegeți acele fungicide care sunt compuse din mai multe substanțe active (contact și sistemice). Acestea pot proteja plantele mai mult timp. După cum știți, fungicidele omologate pentru combaterea patogenilor din culturile de cereale au spectru larg de acțiune, controlând mai mulți patogeni (complex de boli foliare, boli ale tulpinii și ale spicului).

Simptome produse de Septoria tritici. Pata mai veche este deja necrozată, restul sunt galbene și fără picnidii la suprafață

Simptome produse de Septoria tritici. Pata mai veche este deja necrozată restul sunt galbene și fără picnidii la suprafață

 

Recunoașterea simptomelor

 

Simptomele pot fi recunoscute foarte ușor. Ele pot apărea încă din toamnă și chiar în timpul iernilor blânde.

Tabloul simptomatic al bolii este următorul:

  • Pe frunze apar pete care pot avea diferite forme: ovale, alungite, neregulate. Cel mai adesea, petele au formă dreptunghiulară, limitate de nervurile frunzelor;

  • Inițial, culoarea petelor este verzuie – galbenă, iar pe măsură ce patogenul evoluează capătă culoare maro;

  • La atacuri masive, întreaga frunză poate fi acoperită de pete maronii care în stadiu avansat devin cenușii și mor;

Simptom tipic. Pete dreptunghiulare cu două margini drepte delimitate de nervuri și două difuze

Simptom tipic. Pete dreptunghiulare cu două margini drepte delimitate de nervuri și două difuze

  • Uneori, de jur împrejurul petelor apare un halou clorotic;

  • Tabloul simptomatic este întregit de prezența pe suprafața petelor a unor spori negri numiți picnidii, care pot fi observați cu ochiul liber. Aceste fructificații sunt așezate în șiruri paralele cu nervurile frunzei;

  • Uneori, pe teci și pe pai pot apărea pete alungite, clorotice, care în final se brunifică [Hatman et al., 1989; Popescu, 2005; Murray et al., 2009].

418499312 122145163514088675 1356468859273860307 n

 

Realizarea infecțiilor

 

Primăvara, primele infecții sunt realizate de ascosporii aduși de vânt din zonele unde au iernat după care infecțiile secundare sunt preluate de picnosporii din picnidii. După Popescu (2005), infecțiile primare pot fi produse și de miceliile care iernează în camera substomatică și care, primăvara, în condiții favorabile de climă, vor forma picnidiile cu picnospori. În teren, adeseori pseudoteciile sunt confundate cu picnidiile, de aceea analizele de laborator sunt necesare pentru stabilirea exactă a sursei de inocul.

Picnidii de Septoria tritici care în prezența apei expulzează o masă mucilaginoasă albicioasă plină de conidii (responsabile de infecțiile secundare)

Picnidii de Septoria tritici care în prezența apei expulzează o masă mucilaginoasă albicioasă plină de conidii responsabile de infecțile secundare

Când infecția se transmite prin sămânță, după semănat, în timpul germinării, miceliul ciupercii trece din tegument în coleoptil. În această fenofază, coleoptilele infectate se vor brunifica și vor muri. Toamna, tinerele plăntuțe pot fi infectate de picnosporii din picnidii și chiar de ascosporii din pseudotecii. Pseudoteciile care eliberează ascospori pot fi găsite pe resturile vegetale în iernile blânde [Eyal et al., 1987; Popescu, 2005]. În prezent, din cauza sistemelor agricole bazate pe monocultură, rotații scurte și lipsa diversității plantelor cultivate într-o fermă, Septoria tritici trece foarte ușor de pe samulastră în noile culturi.

 

Supraviețuirea patogenului peste anotimpul de iarnă

 

Ciuperca supraviețuiește în sezonul rece pe resturile vegetale infectate, pe miriște sub formă de miceliu, picnidii cu picnospori și pseudotecii, rezistând la temperaturi scăzute. La aceste surse de inocul se adaugă sămânța. Prin miceliul din tegument și picnidiile din șanțulețul ventral și smocul de perișori al cariopselor, boala poate fi transmisă în sezonul următor [Popescu, 2005]. Picnidiile pot supraviețui în miriște câteva luni, chiar 20 de luni, timp în care își păstrează capacitatea de infecție [Hess & Shaner, 1985; Eyal et al., 1987; Popescu, 2005].

 

Condiții climatice favorabile infecțiilor

 

Septoria tritici este un fung care are nevoie de prezența umidității în toate fazele infecției (germinare, penetrare, dezvoltare). Numeroase studii arată că perioadele de umiditate trebuie să fie de aproximativ 72 de ore pentru ca patogenul să realizeze infecția. După Fournet (1969), picnosporii sunt eliberați din picnidii atunci când apa persistă pe frunze mai mult de 30 de minute. În momentul expulzării, picnosporii se află grupați într-o masă gelatinoasă, lipicioasă care îi protejează de uscăciune, mărindu-le viabilitatea. În condiții favorabile de temperatură ei vor germina. Picnosporii pot germina la temperaturi minime cuprinse între 2 - 30C. După Popescu (2005), germinarea sporilor și infecțiile se pot realiza la temperaturi minime cuprinse între 6 - 80C și umiditate relativă a aerului de 85% timp de 12 ore. Temperatura optimă este cuprinsă între 20 - 250C, iar cea maximă între 33 - 370C [Hilu & Bever, 1957]. Acest patogen are capacitatea de a se dezvolta într-un interval larg de temperaturi, dar este condiționat de prezența apei. Dacă nu sunt precipitații, infecțiile nu se realizează. Primele simptome apar pe frunze după 6 - 7 zile de la realizarea infecției, iar ciclul se încheie la 11 - 15 zile.

 

Epidemiologia bolii

 

Transmiterea sau răspândirea sporilor pe distanțe mari se face cu ajutorul vântului. Comparativ cu picnosporii care nu pot fi dispersați pe distanțe mari (stau în masa mucilaginoasă), ascosporii pot parcurge distanțe lungi cu ajutorul curenților de aer.

Masa gelatinoasă plină de conidii este expulzată de picnidii în prezența apei

Masa gelatinoasă plină de conidii este expulzată de picnidii în prezența apei

Perioadele de timp lipsite de ploaie opresc evoluția patogenului. În astfel de situații patogenul rămâne în zona bazei tulpinii, progresia bolii către etajele superioare fiind oprită. De asemenea, răspândirea bolii pe verticală și orizontală este încetinită când condițiile climatice nu sunt favorabile și rapidă atunci când temperaturile din timpul nopții sunt cuprinse între 8 - 100C și precipitațiile sunt prezente [Eyal et al., 1987].

Epidemiile de septorioză sunt favorizate de vremea umedă întreținută de ploi continue, de temperaturile moderate, de soiurile sensibile, tehnologiile aplicate și existența sursei de inocul [Eyal et al., 1987].

 

Managementul integrat al septoriozei frunzelor de grâu

 

Septoria tritici este un patogen important al culturilor de grâu, capabil să producă pagube serioase în primăverile umede (între 30 - 50% la soiurile sensibile). De aceea, în cadrul sistemului de management trebuie să ținem cont de toate măsurile care pot preveni instalarea patogenului: măsurile preventive, măsurile chimice și măsurile biologice (dacă este posibil).

Factorii de risc sunt: utilizarea soiurilor sensibile; iernile blânde și umede, primăverile cu vânt; vremea umedă întreținută de ploi continue (mai și iunie); semănatul timpuriu [Popescu, 2005].

417523994 122145163052088675 1439812834211579172 n

Măsuri profilactice

Aceste măsuri au importanță majoră în gestionarea patogenului Septoria tritici. Prin urmare, se recomandă:

  • Utilizarea soiurilor rezistente și a semințelor sănătoase, certificate;

  • Rotații corecte (duc la diminuarea sursei de inocul). Rotațiile de 3 - 5 ani la grâu au redus mult incidența septoriozei frunzelor [Shearer et al., 1974];

  • Distrugerea samulastrei;

  • Tehnologii de cultură care se bazează pe lucrările solului (arături), mai ales în anii cu infecții masive;

  • Îndepărtarea resturilor vegetale duce la diminuarea sursei de inocul [Popescu, 2005].

Măsuri chimice

Chimioterapia deține ponderea în cadrul sistemului de combatere integrată. Tratamentele pot fi făcute preventiv și curativ.

Tratarea semințelor cu fungicide sistemice este obligatorie. În România sunt omologate pentru tratarea semințelor de grâu mai multe fungicide care protejează tinerele plăntuțe de atacul patogenilor specifici, între care și septoriozele. Amintesc aici: fludioxonil; difenoconazol + fludioxonil + tebuconazol; fludioxonil + sedaxan; difenoconazol + fludioxonil +sedaxan; fludioxonil + teflutrin [după aplicația Pesticide 2.24.2.2, 2024].

Fungicidele amintite sunt omologate în general pentru Septoria nodorum. Rareori, Septoria tritici poate fi găsită pe semințe. În partea de vest a României este predominantă Septoria tritici, de aceea în acest material sunt prezentate informații despre acest patogen. Fungicidele omologate combat ambele septorioze.

În vegetație tratamentele trebuie efectuate când PED-ul a depășit 10% intensitate de atac [Popescu, 2005]. Tratamentele preventive pot fi realizate atunci când plantele de grâu se află în stadiul „al doilea nod vizibil” sau când „frunza steag este vizibilă” [Eyal et al., 1987] .

Alte PED - uri (praguri economice de dăunare) de care se poate ține cont (corelate cu fenologia plantelor):

  • Înfrățire - intensitate 30 - 50% sau 1% frunze cu fructificații;

  • Alungirea tulpinii - intensitate 15 - 20% sau 1% frunze cu fructificații;

  • Înspicat - 10% intensitate la frunza steag sau 1% frunze cu picnidii.

Recomandări importante

Combaterea patogenului se realizează în perioada de vegetație, atunci când PED-ul (pragul economic de dăunare) este atins și depășit, adică >10% intensitate de atac. Funcție de fungicidul ales, tratamentele pot fi efectuate până la începutul înfloritului (dacă sunt infecții masive).

Primul tratamentul (T1) pentru controlul septoriozei ar trebui aplicat la stadiul de creștere GS 32 (apariția frunzei 3) - acest tratament asigură control maxim pentru frunza 3 și bun pentru frunza 2.

Al doilea tratament (T2) pentru controlul septoriei ar trebui aplicat la stadiul de creștere GS 39 - este foarte important și asigură control maxim pentru frunza steag și oprește infecțiile care eventual s-au instalat pe frunza 2.

Despre tratamentul T0 (cu 2 sau 4 săptămâni înainte de T1), studiile arată că rareori este eficient.

Momentul optim pentru aplicarea primului tratament trebuie ales cu mare atenție, ținând cont de starea fitosanitară a culturilor și de prognoza climatică. Primul tratament pentru combaterea septoriozei ar trebui efectuat în intervalul fenologic „începerea alungirii paiului - apariția frunzei stindard” adică BBCH 30 - 39.

Fungicidele omologate în România pentru combaterea septoriozei la grâu (dar și pentru alți patogeni ai cerealelor) sunt: Azoxistrobin; bixafen +spiroxamină + trifloxistrobin; Protioconazol + tebuconazol; protioconazol + spiroxamină; protioconazol + trifloxistrobin; protioconazol + spiroxamină + trifloxistrobin; bixafen + tebuconazol; Difenoconazol; Piraclostrobin; Fluxapyroxad; fluxapiroxad + piraclostrobin; fluxapyroxad + metconazol; fluxapyroxad + mefentrifluconazol; mefentrifluconazol + piraclostrobin; Mefentrifluconazol; Metconazol; Protioconazol; Tebuconazol; bixafen + protioconazol; boscalid + kresoxim metil; difenoconazol + tebuconazol; difenoconazol + fluxapiroxad; bromuconazol + tebuconazol; Proquinazid + protioconazol; Folpet; Kresoxim - metil + mefentrifluconazol [după aplicația PESTICIDE 2.24.2.2, 2024].

IMPORTANT!

Când intensitatea atacului este ridicată, fungicidele trebuie alese cu atenție. În astfel de situații se recomandă utilizarea fungicidelor compuse din mai multe substanțe active cu moduri diferite de acțiune (contact și sistemice). Combinațiile de mai multe substanțe active asigură protecție pentru o perioadă mai lungă de timp. Marea majoritate a fungicidelor omologate pentru combaterea patogenilor din culturile de cereale au spectru larg de acțiune, controlând mai mulți patogeni.

Când apa nu este prezentă, masa gelatinoasă plină de conidii ia forma unor cârcei

Când apa nu este prezentă masa gelatinoasă plină de conidii ia forma unor cârcei

Într-un sezon de vegetație este foarte important să alternați substanțele active pentru a evita apariția fenomenului de rezistență. De asemenea, respectați dozele recomandate de producători (se observă o tendință a fermierilor de a supradoza). Nerespectarea dozelor recomandate de producători duce la instalarea fenomenului de rezistență. Tratamentele fitosanitare trebuie aplicate în zile fără vânt și cu temperaturi mai mari de 5 0C (atât noaptea cât și ziua). Utilizarea echipamentelor de protecție este obligatorie (pesticidele pot produce boli grave). Respectați timpii de pauză (la unele fungicide este de 61 de zile).

Măsuri biologice

Combaterea acestui patogen cu ajutorul agenților biologici nu este posibilă în prezent (patogenii în general sunt mai greu de combătut). Totuși, agenții biologici sunt în atenția cercetătorilor. Se testează intens bioagenții Trichoderma spp., Bacillus megaterium, Pseudomonas sp., Gliocadium roseum, Sporotrichum mycophillum [Popescu, 2005; Ponomarenko, 2011]. Unele studii raportează rezultate foarte bune în cazul agentului biologic B. megaterium. S-a constatat că, acesta oprește dezvoltarea septoriozei cu până la 80%. Pe lângă B. megaterium, se cercetează bacteriile antagonice din genul Pseudomonas, mai ales că dezvoltarea lor nu este stânjenită de fungicidele utilizate. Testele se fac pe suprafețe mici sau în spații protejate de aceea, de multe ori rezultatele sunt foarte bune. Aplicate pe suprafețe mari, rezultatele nu mai sunt cele scontate (influența factorilor climatici, pedologici etc).

În consecință, aceste biofungicide trebuie mai mult testate în câmp pentru a-și dovedi eficacitatea [Ponomarenko, 2011]. În fermele ecologice din Timiș, semințele de grâu sunt tratate cu produse pe bază de Trichoderma spp., Bacillus subtilis, micorize arbusculare și extract de alge (am asistat la astfel de tratamente). Aceste produse asigură o protecție destul de bună în primele stadii de vegetație ale plantelor.

Cu sprijinul parteneriatului dintre compania Bayer și USV „Regele Mihai I” din Timișoara am adus în atenția dumneavoastră informații importante despre prezența fungului Septoria tritici.

 

Bibliografie

Eyal Z., A. L. Scharen, J. M. Prescott, M. van Ginkel, 1987 - The Septoria Diseases of Wheat: Concepts and methods of disease management. Mexico, D.F.: CIMMYT. 52 pp.
Fournet J., 1969 - Properties et role du cirrhe du Septoria nodorum Berk. Ann . Phytopathol. 1:87 - 94.
Hatman M., Bobeș I., Lazăr Al., Gheorghieș C., Glodeanu C., Severin V., Tușa C., Popescu I., Vonica I., 1989 - Fitopatologie, Editura Didactică și Pedagogică, București, 468 p.
Hess D. E., G. Shaner, 1985 - Effect of moist period duration on septoria tritici blotch of wheat. Pp. 70-73 in A.L. Scharen, ed. Septoria of Cereals. Proc. Workshop, August 2 - 4, 1983, Bozeman, MT. USDAARS Publ. No. 12. 116 pp.
Hilu H. M., W. M. Bever, 1957 - Inoculation, oversummering and susceptpathogen relationship of Septoria tritici on Triticum species. Phytopathology 47: 474 - 480.
Murray T. D., Parry D. W., Cattlin N. D., 2009 – Diseases of small grain cereal crops, Manson Publising Ltd, London, U. K., 142 pp.
Ponomarenko A., S. B. Goodwin, G. H. J. Kema, 2011 - Septoria tritici blotch (STB) of wheat. Plant Health Instructor. DOI:10.1094/PHI-I-2011-0407-01.
Popescu Gheorghe, 2005 - Tratat de patologia plantelor, vol. II, Ed. Eurobit, 341 p.
Shearer B. L., R. J. Zeyen, U. Ooka, 1974 - Storage and behaviour in soil of Septoria species isolated from cereals. Phytopathology 64: 163 - 167.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

otilia

Foto: Otilia Cotuna

Abonamente Revista Fermierului – ediția print, AICI!

Continuăm monitorizarea gărgărițelor tulpinilor de rapiță, Ceutorhynchus (pallidactylus  și napi). În vestul României, temperaturile au început să crească ziua, nopțile sunt răcoroase, iar vântul rece bate. Afectează aceste condiții climatice activitatea gărgărițelor? Vom vedea.

429582960 122142517238088675 7378131441936398335 n

La data de 23 februarie 2024, capturile au fost numeric foarte reduse comparativ cu cele din 20 februarie 2024 (mai multe detalii, aici: https://revistafermierului.ro/din-revista/protectia-plantelor/item/6054-evolutia-zborului-gargaritelor-tulpinilor-de-rapita-ce-au-de-facut-fermierii.html). La capcanele cu adeziv (două) au venit câte doi adulți, iar la capcana cu apă doar patru. Număr mic de capturi.

Dar, oare ce se întâmplă la nivelul plantei? Am controlat vineri – 23 februarie - mai multe plante și am constatat că gărgărițele aveau activitate, nu erau amorțite și se împerecheau. Chiar dacă nu avem capturi la capcane, gărgărițele își văd de viața lor, mai ales cele din specia „pallidactylus” care sunt predominante acum. Ceutorhynchus napi vine din urmă și în curând vom asista la apariții masive (dacă vremea permite).

429511094 122142517286088675 3673766680719877187 n

Marți, 27 februarie 2024, numărul de adulți de la capcane a fost foarte scăzut: unul la o capcană cu adeziv, doi la capcana cu apă. Se pare că nopțile cu temperaturi mai scăzute și vântul rece din timpul zilei nu permit gărgărițelor să zboare.

Verificarea plantelor de rapiță din data de 27 februarie 2024, arată că gărgărițele sunt active în zona vârfului de creștere al plantelor. La cinci plante verificate am găsit o gărgăriță.

În consecință, verificați plantele, gărgărițele sunt acolo și sunt active. Țineți cont de pragul de o gărgăriță la cinci plante verificate. Verificarea se face la întâmplare. Trebuie sa fiți foarte atenți, deoarece momentul optim de combatere foarte ușor poate fi ratat.

429477917 122142517304088675 1627964768598482946 n

Detalii despre combatere găsiți în articolul din link: https://revistafermierului.ro/din-revista/protectia-plantelor/item/6041-gargaritele-tulpinilor-au-inceput-sa-migreze-catre-noile-culturi-de-rapita.html.

Nu uitați! Repetarea tratamentului se face la 7-8 zile.

Săptămâna viitoare vom monta și capcane cu dispenser pentru a captura Ceutorhynchus napi.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

otilia

Abonamente Revista Fermierului – ediția print, AICI!

Pentru a urmări evoluția zborului celor două specii de Ceutorhynchus (napi și pallidactylus), am amplasat două capcane galbene cu adeziv și o capcană galbenă cu apă pe teritoriul Stațiunii Didactice a USVT Timișoara, într-o cultură de rapiță.

Dacă săptămâna trecută, pe 15 februarie 2024 nu aveam nici o captură la cele trei capcane (era frig, iar apa de la capcana cu apă chiar a înghețat), acum lucrurile stau cu totul altfel. Temperaturile mai ridicate de la sfârșitul săptămânii au favorizat zborul celor două gărgărițe. În consecință, avem capturi la cele trei capcane. Citirile la capcane le voi face pe întreaga perioadă de vegetație a rapiței în zilele de marți și vineri.

Ceutorhynchus pallidactylus (femelă stânga și mascul dreapta), la stereomicroscop. Masculul este mai mic decât femela

Ceutorhynchus pallidactylus femelă stânga și mascul dreapta la stereomicroscop. Masculul este mai mic decât femela

Ceutorhynchus napi la stereomicroscop

Ceutorhynchus napi la stereomicroscop

La citirea din data de 20 februarie 2024 (cinci zile de la ultima citire unde nu am avut capturi), situația capturilor la capcane este următoarea:

  • Capcana 1 cu adeziv - 9 capturi (1,8 gărgărițe/zi);

  • Capcana 2 cu adeziv - 30 capturi (6 gărgărițe/zi);

  • Capcana 3 cu apă - 43 de capturi (8,6 gărgărițe/zi).

Aceste rezultate trebuie să ne alerteze. De ce? Pentru că se anunță vreme caldă în perioada următoare și cu siguranță vom asista la o abundență de gărgărițe.

Din observațiile făcute în câmp, pe 20 februaie 2024, am observat că gărgărițele se hrănesc și au început să se împerecheze. Încă nu ne îngrijorăm, dar monitorizăm cu atenție acești doi dăunători pentru a surprinde momentul optim pentru aplicarea unui tratament (care este foarte greu de surprins din păcate).

Analiza adulților capturați la capcane arată că Ceutorhynchus pallidactylus este predominant prin comparație cu C. napi (deocamdată).

Ceutorhynchus napi. Timișoara, 20.02.2024

Ceutorhynchus napi. Timișoara 20.02.2024

Nu am reușit să analizez toate capturile, dar vă pun la dispoziție rezultatele de la capcana cu apă unde am avut și cele mai multe gărgărițe. Din totalul de 43 de gărgărițe, 86% aparțin speciei „pallidactylus” și 14% speciei „napi”. Sunt prezente ambele sexe (masculi și femele). Ceutorhynchus pallidactylus este foarte activ, se împerechează. Despre Ceutorhynchus pallidactylus știm că primii adulți care ies din hibernare sunt masculi. Acum sunt prezente și femelele în procent destul de ridicat. Nu am găsit încă femele cu ouă. Cu siguranță sunt și poate chiar au depus și ouă. Voi verifica săptămâna viitoare acest aspect.

Ceutorhynchus pallidactylus la capcana galbenă cu adeziv. Timișoara, 20.02.2024

Ceutorhynchus pallidactylus la capcana galbenă cu adeziv. Timișoara 20.02.2024

 

Ce trebuie să facă fermierii

 

Monitorizați zborul. Citiți capcanele la trei zile sau chiar și zilnic. Observațiile trebuie făcute înainte de amiază sau la amurg.

Dacă constatați că, timp de trei zile consecutiv la capcane vin zece adulți de Ceutorhynchus napi și/sau pallidactylus, trebuie să treceți la efectuarea unui prim tratament. Acest prag este recomandat de EPPO (Organizația Europeană de Protecția Plantelor) și vă recomand să țineți cont de el.

Știu că unii fermieri s-au grăbit cu primul tratament, efectuându-l în prima fereastră cu vreme caldă de la sfârșitul primei decade a lunii februarie. Acum vor trebui să intervină din nou, din păcate.

Adulți de Ceutorhynchus pallidactylus capturați la capcanele cu adeziv. Se observă că se împerechează

Adulți de Ceutorhynchus pallidactylus capturați la capcanele cu adeziv. Se observă că se împerechează

Pentru detalii cu privire la metodele de combatere ale celor două gărgărițe, accesați pagina universitară de facebook dedicată fermierilor USVT PLANT PROTECTION și pagina companiei Bayer Crop Science România. Sau, accesați link-ul: https://revistafermierului.ro/din-revista/protectia-plantelor/item/6041-gargaritele-tulpinilor-au-inceput-sa-migreze-catre-noile-culturi-de-rapita.html

417413735 122141125052088675 294084154310131259 n

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

Abonamente Revista Fermierului – ediția print, AICI!

În această fereastră cu vreme caldă din februarie 2024, gărgărițele tulpinilor de rapiță au început să migreze de la locurile de hibernare către noile culturi de rapiță. Compania Bayer în parteneriat cu USV „Regele Mihai I” din Timișoara aduce în atenție informații importante care pot ajuta fermierii să prevină infestările masive cu acești dăunători.

Ambele specii de Ceutorhynchus (Pallidactylus - gărgărița tulpinilor de varză și Napi - gărgărița tulpinilor de rapiță) au importanță economică deoarece pot distruge plantele prin reducerea creșterii lor, afectând în final producția de semințe. Au o generație pe an și iernează ca adult. Stadiul larvar este cel care produce daune rapiței, dar și altor brassicaceae (varză, conopidă, ridichi, muștar). Din cauza atacului larvelor, tulpinile se deformează, crapă și se pot frânge foarte ușor. Zonele lezate sunt o poartă de intrare pentru agenții patogeni ai tulpinii, dar și pentru alți fungi ce pot produce putrezirea. Uneori plantele ramifică excesiv, nu mai cresc și în cazurile grave chiar nu mai formează silicve [Roșca et al., 2011]. Pagubele pot ajunge uneori la 50% din producție și chiar mai mult.

Adulți de Ceutorhynchus napi și pallidactylus capturați cu ajutorul capcanelor galbene cu adeziv

Adulți de Ceutorhynchus napi și pallidactylus capturați cu ajutorul capcanelor galbene cu adeziv

 

Ce trebuie să facă fermierii în această perioadă

 

În perioada de migrare masivă a celor două gărgărițe către noile culturi de rapiță este vital ca fermierii să înceapă monitorizarea corectă. La data de 11 februarie 2024, din cauza temperaturilor ridicate, primele gărgărițe au început să apară în culturile de rapiță.

Factorii climatici influențează foarte mult apariția și activitatea gărgărițelor în câmp (temperatura, umiditatea, precipitațiile). Însă, temperatura este cea mai importantă. Ceutorhynchus pallidactylus migrează când temperatura solului trece de 60C și începe să zboare la 120C. C. napi își începe zborul la 9 - 100C [Büchs, 1998; Juran et al., 2011). După Bűchs (1998), adulții încep să iasă de la iernat atunci când temperatura solului la 5 cm este în jurul valorii de 6°C. În realitate, cei mai mulți autori arată că gărgărițele părăsesc locurile de iernare când temperatura din stratul superior al solului ajunge la 9 - 100C [Sekulič et Kereši 1998; Juran et al., 2011].

În stânga - adult de Ceutorhynchus napi, iar în dreapta - adult de Ceutorhynchus pallidactylus

ldkflf

La capcanele galbene, gărgărițele capturate în această perioadă sunt Ceutorhynchus pallidactylus, urmând ca în perioada ce urmează, dacă temperaturile ridicate se mențin, să apară și C. napi. De regulă, puțini fermieri fac diferența între cele două gărgărițe. Totuși, ar trebui să cunoască că, dintre cele două specii, C. napi produce pagube mai mari [Šedivý et Kocourek, 1994]. Detectarea acestor gărgărițe poate fi extrem de dificilă din cauză că adulții stau de obicei la suprafața solului, sub bulgării de pământ [Gratwick, 1992].

 

Monitorizarea corectă, cheia succesului

 

În cazul celor două gărgărițe, monitorizarea corectă reprezintă cheia succesului. Ciclul de viață, modul ascuns de hrănire și apariția eșalonată a gărgărițelor creează mari probleme fermierilor. Din acest motiv, de multe ori, fermierii execută greșit tratamentele, fie că le fac prea devreme, fie că le fac prea târziu. Tot mai des aud: „Am făcut tratamente, dar tulpinile sunt pline de larve”. Așadar, este important să controlăm adulții în momentele cheie, conform datelor obținute la capcane și a pragurilor economice de dăunare (PED). Larvele pătrunse în pețioli și tulpini nu mai pot fi controlate.

Monitorizarea noilor culturi de rapiță ar trebui să înceapă în luna februarie. Este valabil și pentru culturile vechi. Fermierii ar trebuie să monitorizeze cu ajutorul capcanelor ambele zone pentru ca rezultatele să fie optime. Indiferent de tipul de capcană, citirea lor trebuie făcută cu multă acuratețe la fiecare trei zile. Momentele din zi ideale pentru citirea capcanelor (recomandate de cercetători) sunt „înainte de amiază” sau „la amurg”.

Capcana Csalomon cu atractanți

Capcana Csalomon cu atractanti

Zborul gărgărițelor trebuie monitorizat, pentru stabilirea momentului optim de combatere, cu mai multe tipuri de capcane:

  • Capcanele galbene cu apă (vase Moericke), clasice, sunt utilizate cel mai des pentru monitorizarea celor două gărgărițe;

  • Capcanele „Csalomon KLP+ trap” cu atractant. Aceste capcane sunt mai puțin cunoscute de către fermieri. Acest tip de capcană poate fi amplasat lângă vechea cultură de rapiță. Momeala din capcane atrage toate speciile de gărgărițe din genul Ceutorhynchus, dar există și momeli doar pentru pallidactylus. Alte specii pot intra în capcană doar accidental. La 3 - 4 săptămâni, producătorii recomandă schimbarea momelilor. Fermierii trebuie să știe că acest tip de capcană este foarte eficient pentru detectarea timpurie la locurile de iernare. Dacă se înregistrează capturi în aceste zone, în una sau două zile gărgărițele vor migra în noile culturi de rapiță. Acest aspect este încurajat și de faptul că fermierii fac rotații scurte și nu respectă distanța dintre culturi. În consecință, migrarea se realizează foarte rapid. Capcanele cu momeli pot fi achiziționate de la Institutul de Protecția plantelor din Budapesta [http://www.csalomontraps.com];

  • Capcane galbene cu adeziv. Acestea sunt cel mai des utilizate de către fermieri.

Capturi la capcana cu momeli Csalomon

Capturi la capcana cu momeli Csalomon

 

Managementul integrat al gărgărițelor tulpinilor de rapiță

 

Managementul integrat constă într-o sumă de măsuri de combatere ce pot fi utilizate echilibrat pentru a proteja mediul, entomofauna utilă, sănătatea oamenilor și animalelor.

În managementul celor două specii de Ceutorhynchus este esențială utilizarea unei strategii de combatere care să includă măsurile de prevenție, măsurile chimice și, din păcate, mai puțin măsurile biologice. Abordarea metodelor de prevenție și biologice este esențială în prezent. De aceea, există un real interes pentru combaterea biologică a celor două gărgărițe ale tulpinilor de rapiță (se fac testări cu entomopatogeni).

Ceutorhynchus pallidactyus

Ceutorhynchus pallidactyus

Ceutorhynchus napi

Ceutorhynchus napi

 

Metode profilactice

Principalele măsuri profilactice (care de cele mai multe ori nu sunt respectate) sunt:

  • Izolarea culturii;

  • Îndepărtarea resturilor de plante care rămân după recoltare (sunt pline de larve);

  • Arătură adâncă după recoltare (mai ales atunci când infestarea a fost mare), deoarece larvele se împupează în sol. Dacă arătura se execută mai tarziu, va fi ineficientă, deoarece adulții iernează în afara culturii infestate;

  • Fertilizare cu azot echilibrată.

 

Metode chimice

Pentru rezultate optime, adulții celor două specii de Ceutorhynchus ar trebui combătuți în următoarele perioade:

  • Perioada de migrare;

  • Perioada de hrănire și chiar de început a depunerii ouălor.

Momentul aplicării unui tratament este foarte important, deoarece eficiența este în strânsă legătură cu acesta. Toate tratamentele trebuie efectuate în urma monitorizării și doar atunci când pragul economic de dăunare este atins sau depășit uneori.

Ceutorhynchus pallidactylus urcând pe planta de rapiță

Ceutorhynchus pallidactylus urcând pe planta de rapiță

Tratamentele trebuie executate după cum urmează:

  • Primul tratament trebuie aplicat imediat ce pragurile economice sunt atinse (uneori chiar depășite). În literatura de specialitate se recomandă ca primul tratament să se facă la pragul de 10 - 20 adulți capturați timp de trei zile consecutiv sau când mai mult de un adult este găsit la cinci plante controlate sau când sunt semne de ovipunere pe mai mult de 20% din plante (Juran et al., 2011);

  • După EPPO (2003), combaterea gărgărițelor tulpinilor de rapiță este necesară atunci când în decurs de trei zile la capcane sunt prinși 10 adulți. Este doar o recomandare, însă fermierii ar trebui să țină cont de ea;

  • Pentru napi, un prag recomandat și des utilizat este de 4 - 6 gărgărițe/capcană la trei zile [Šedivý, 2000];

  • Pentru pallidactylus, pragul economic de dăunare este de 12 gărgărițe/capcană la trei zile [Šedivý, 2000];

  • În România se recomandă un prag economic de 2 adulți/plantă [Goga et al., 2020];

  • În zonele unde rapița se cultivă pe suprafețe mari, iar plantele sunt atacate an de an, se recomandă chiar efectuarea unui prim tratament la atingerea pragului de 3 gărgărițe/capcană/zi;

  • Deoarece fermierii nu pot face diferența între cele două specii, pragul recomandat în general este de 10 gărgărițe/capcană timp de trei zile consecutiv [Alford et al., 2003].

Tinere larve în pețiol

Tinere larve în pețiol

Există cercetători care afirmă că primul tratament trebuie efectuat atunci când se înregistrează un număr mare de indivizi imediat după migrare. Tratamentul trebuie repetat o dată sau de două ori la interval de 7 - 8 zile [Graham et Gould, 1980; Winfield, 1961].

În literatura de specialitate mai există și alte praguri economice, relative de cele mai multe ori. În realitate, momentul optim de combatere este foarte greu de surprins, de aceea unele praguri ar trebui revizuite [Seidenglanz et al., 2009].

În România sunt omologate mai multe insecticide pentru combaterea celor două specii de Ceutorhynchus, după cum urmează: acetamiprid, cipermetrin, deltametrin + flupiradifuron, deltametrin, gama - cihalotrin, lambda - cihalotrin, tau - fluvalinat, esfenvalerat, acetamiprid + lambda - cihalotrin [după Aplicația Pesticide 2.24.2.1., 2024].

Executați tratamentele doar la întrunirea pragului economic de dăunare, respectați dozele recomandate de producători, fenofazele când pot fi aplicate (la unele insecticide), timpii de pauză etc. Evitați efectuarea tratamentelor în afara avertizărilor. Este deja cunoscut că foarte mulți fermieri abuzează de combaterea chimică (care poluează solul, apa, aerul, produsele vegetale, omoară entomofauna utilă și creează dezechilibre mari în comportamentul albinelor). Tratamentele trebuie efectuate în zile cu temperaturi de peste 50C, fără vânt și fără precipitații.

Orificii produse de femele în pețioli și tulpini când depun ouăle

Orificii produse de femele în pețioli și tulpini când depun ouăle

Efectuarea de tratamente chimice în ferestrele din februarie poate avea avantaje și dezavantaje. Înainte de a efectua un tratament consultați prognoza. Dacă se anunță vreme rece după câteva zile calde, este bine să nu faceți tratamentul. Este cunoscut că primii care ies de la iernat sunt masculii. Mai târziu apar și femelele. Începe procesul de hrănire urmat de împerechere și depunere ouă. De aceea, tratamentele din februarie nu întodeauna sunt rentabile, dacă intervin perioade cu temperaturi scăzute care opresc activitatea adulților. În astfel de situații este bine să nu întrerupeți monitorizarea gargărițelor, pentru a surprinde perioadele maxime de zbor.

 

Măsuri biologice

Combaterea biologică este de interes în cazul acestor gărgărițe. Se fac studii cu privire la utilizarea entomopatogenilor, a paraziților și prădătorilor. Deocamdată, în mod natural, larvele gărgăriței tulpinilor de varză pot fi parazitate în procent de peste 50% de Tersilochus spp. [Alford et al., 2000].

După Alford et al. (2003), densitatea populațiilor de C. pallidactylus depinde în natură de activitatea entomofagilor (de ex., paraziții larvari Diospilus affinis Wsm. și prădătorul larvar Muscina stabulans Fallen).

Într-un material viitor vom aduce în atenție aspecte despre biologia acestor gărgărițe care vă pot ajuta în monitorizare.

 

Bibliografie
Alford, D. V., Ballanger, Y., Büchi, R., Büchs, W., Ekbom, B., Hansen, L. H., Hokkanen, H. M. T., Kromp. B., Nilsson, Christer, Ulber, B., Walters, K. F. A., Williams, I. H., Young, J. E. B., 2000, Minimizing pesticide use and environmental impact by the development and promotion of bio-control strategies for oilseed rape pests. Final Report, Project FAIR CT 96 - 1314, 119 pp.
Alford V. A., Nilsson C., Ulber B., 2003, Insect pests of oilseed rape crops. In: Biocontrol of oilseed rape pests ed. by Alford V. A. Blackwell Science, Oxford, pp 9 - 41.
Büchs W., 1998, Strategies to control the cabbage stem weevil (Ceutorhynchus pallidactylus) and the oilseed rape stem weevil (Ceutorhynchus napi) by a reduced input of insecticides. IOBC Bulletin, 21: 205–220.
EPPO (2003). Guidlines for efficacy evaluation of plant protection product – insecticides & acaaricides, Effi cacy evaluation of insecticides – Ceutorhynchus napi and Ceutorhynchus pallidactylus on rape. Bulletin OEPP/EPPO Bulletin 33: 65 - 69.
Graham C. W., Gould H. J., 1980, Cabbage weevil on spring oilseed rape in Southern England and its control. Annals of Applied Biology, 95 (1). Colchester & London: 1 - 10.
Gratwick, M., 1992, Crop pests in the UK. Chapman and Hall Kirk, W. D. J., 1992, Insects on cabbages and Oilseed rape. Richmond Publishing.
Goga N., Mondici S., Ursulescu V. B., Brejea R., 2020, Manifestations of the pest Ceutorhynchus napi (Large rapeseed beetle) in the agroclimate of North - Western Romania, Annals of the University of Oradea, Fascicle: Environmental Protection, doi.org/10.5281/zenodo.4362296, Vol. XXXIV, 61 - 66.
Juran I., Gotlin Čuljak T., Grubišic D., 2011, Rape stem weevil (Ceutorhynchus napi Gyll. 1837) and cabbage stem weevil (Ceutorhynchus pallidactylus Marsh. 1802) (Coleoptera: Curculionidae) – important oilseed rape pests. Agriculturae Conspectus Scientificus, 76: 93 – 100.
Seidenglanz M., Poslušná J. Hrudová E., 2009, The importance of monitoring the Ceutorhynchus pallidactylus female flight activity for the timing of insecticidal treatment. Plant Protect. Sci., 45: 103 – 112.
Šedivý J., Kocourek F., 1994, Flight activity of winter rape pests. Journal of Applied Entomology, 117: 400 – 407.
Šedivý J., 2000, Škůdci ozimé řepky. In: Vašák J. (ed.): Řepka. Agrospoj, Praha: 199 – 220.
Sekulič R., Kereši T., 1998, O masovnoj pojavi stablovog kupusnog rikša – Ceutorhynchus pallidactylus Marsh. (Coleoptera, Curculionidae). Bijni lekar, 3, 239 – 244.
Winfield A., 1961, Observations on the biology and control of the cabbage stem weevil, Ceutorhynchus quadridens (Panz.) on the trowse mustard (Brassica juncea). In: Pearson O., ed. Bulletin of Entomological research, 52 (3). London: P. 589-600.
Adult de Ceutorhynchus pallidactylus ascuns în vârful de creștere al plantei

Adult de Ceutorhynchus pallidactylus ascuns în vârful de creștere al plantei

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Aducem în atenția pomicultorilor informații importante despre patogenul Cytospora sp. care atacă pomii fructiferi și nu numai. Aceste informații vă pot ajuta să preveniți instalarea patogenului în livezi, evitând astfel pierderile de producție.

Citosporioza a început să creeze probleme în multe livezi din România. Livezi tinere de cinci și opt ani sunt bolnave, unele chiar fiind în situația gravă în care nu se mai poate face nimic pentru salvarea plantelor, mai ales acolo unde sunt cultivate soiuri sensibile. Suspiciunea este că în aceste plantații nu se execută corect tratamentele chimice și nici măsurile de prevenție nu sunt respectate. Din cauza lipsei specialiștilor, boala nu este identificată la timp.

Lăstar de măr acoperit de fructificațiile fungului Cytospora sp. Se observă exudatele gelatinoase de culoarea chihlimbarului, care în contact cu aerul au luat diferite forme asemănătoare cu niște cârlionți. Aceste formațiuni sunt pline de sporii fungului care sunt eliberați în prezența apei

Lăstar de măr acoperit de fructificațiile fungului Cytospora spjpg

Pe fondul climatic actual (cu veri călduroase), deosebit de favorabil infecțiilor, citosporioza omoară pomii tineri. Cancerul citosporian poate fi produs de mai multe specii ale genului Cytospora, care este frecvent întâlnit în livezile neîngrijite sau îmbătrânite unde produce pagube importante prin uscarea ramurilor și chiar a pomilor în urma infecțiilor prin rănile produse de grindină, ger, insecte sau de utilaje. De regulă, cei mai expuși infecțiilor sunt pomii debilitați. Analizele făcute de mine la măr, cireș și cais arată că forma și culoarea picnidiilor de sub scoarță este specifică speciei Cytospora leucostoma, specie raportată și de alți cercetători ca fiind prezentă în livezile din România. Forma perfectă a fungului (Valsa) nu a fost observată (Cotuna et al., 2020).

Deoarece patogenul este tot mai prezent în livezile din România (tinere și bătrâne) readuc în atenția dumneavoastră informații cu privire la recunoașterea, biologia și combaterea acestuia. Informațiile din acest material reprezintă un extras dintr-o lucrare științifică scrisă de mine și colaboratorii mei, publicată într-un jurnal științific în anul 2020.

Cârcei plini de conidii. Pot fi observați în perioadele ploioase cu ochiul liber sau cu o lupă. Aici s-au dezvoltat la camera umedă. Ajută mult în diagnosticarea corectă a patogenului

Cârcei plini de conidii. Pot fi observați în perioadele ploioase cu ochiul liber sau cu o lupă. Aici s au dezvoltat la camera umedă. Ajută mult în diagnosticarea corectă a patogenului

 

Cine produce citosporioza?

 

Cancerul ramurilor sau uscarea micotică a ramurilor (citosporioza) poate fi cauzată de mai multe specii ale ciupercii Cytospora. Această boală este considerată gravă în livezile aflate în declin sau în cele neîngrijite, unde pomii și-au pierdut vigoarea. Din cauza citosporiozei, pomii se pot usca, iar pierderile economice sunt majore. În livezile viguroase, unde pomii sunt sănătoși, de obicei acest patogen nu se instalează [Minoiu și Lefter, 1987].

Infecțiile produse de speciile de Cytospora pot fi devastatoare pentru pomii fructiferi (Prunus persica, P. armeniaca, P. avium, Malus spp., Juglans spp., etc), dar și pentru multe alte specii de plante lemnoase [Biggs & Grove 2005; Wang et al. 2011; Fan et al., 2015a]. De-a lungul timpului, cercetătorii au arătat că mai mult de 85 de specii de plante lemnoase pot fi infectate [Sinclair et al., 1987, Adams et al., 2005, 2006; Spielman, 1983; Bills, 1996; Christensen, 1940].

Picnidiile fungului Cytospora sp. (după cum arată par a fi ale fungului Cytospora leucostoma) care pot fi observate imediat sub scoarța bolnavă care se desprinde cu ușurință

Picnidiile fungului Cytospora sp. după cum arată par a fi ale fungului Cytospora leucostoma care pot fi observate imediat sub scoarța bolnavă care se desprinde cu ușurință

Conform Index Fungorum, aproximativ 612 specii de Cytospora au fost descrise până în prezent. Kirk et al. (2008) au enumerat aproximativ 110 specii de Cytospora acceptate, în timp ce toate celelalte nume de specii erau considerate sinonime de taxoni descriși anterior sau tratați ca specii non-Cytospora înainte de intrarea în vigoare a regulei o ciupercă = un singur nume, în iulie 2011 [Hawksworth, 2011].

Dintre fungii care provoacă citosporioză la pomii fructiferi, frecvent întâlniți în livezi sunt Leucostoma cinctum și L. persoonii (ascomicete din ordinul Diaporthales, familia Valsaceae). Formele anamorfe ale fungilor amintiți sunt Cytospora cincta (Leucocytospora cinctum) și, respectiv, C. leucostoma (L. persoonii).

Diferențele morfologice dintre cele două specii sunt adesea greu de realizat. Structurile asexuate (picnidiile) ale fungilor se formează în leziunile canceroase de pe ramuri și trunchi, sub scoarța moartă. La început, picnidiile sunt evidente ca mici umflături, al căror vârf se rupe pentru a expune discul stromei. Discul de L. persoonii are aspect alb, în timp ce, cel al L. cinctum este de culoare gri sau cenușie. Picnidia ajunsă la maturitate, în condiții umede, produce un exudat gumos sau gelatinos de culoare portocalie sau roșie care conține mii de conidii. Conidiile sunt eliberate sub forma unor cordoane gelatinoase la câteva minute după umectare. Structurile telomorfe de reproducere (peritecia cu ascospori) se formează mult mai târziu, adesea după doi sau trei ani de la formarea inițială a picnidiilor [Biggs and Grove, 2005].

Scoarță denivelată, lenticele mărite, leziuni canceroase mici. În fundal se observă cârceii roșietici. Foto la cireș

Scoarță denivelată lenticele mărite leziuni canceroase mici. În fundal se observă cârceii roșietici. Foto la cireș

 

Recunoașterea citosporiozei

 

În livezile infectate de Cytospora sp., primele semne de boală ce pot fi observate destul de ușor sunt cloroza frunzelor, uscarea vârfurilor lăstarilor, ofilirea și uscarea unor ramuri. Ramurile uscate devin evidente în timpul verii. La examinarea atentă a suprafaței ramurilor pot fi observate cancere de scoarță, de culoare închisă, cu centrul distrus. De obicei, acest patogen atacă pomii slăbiți de atacul patogenilor și dăunătorilor, de condițiile climatice nefavorabile și de aplicarea greșită a unor tehnologii [Minoiu și Lefter, 1987]. Este cunoscut că, fungii din genul Cytospora produc cancere grave la pomi și arbuști, care duc în final la uscarea ramurilor și chiar moartea copacilor. Cancerele de pe tulpini și ramuri apar ca zone scufundate ușor în scoarță, alungite și decolorate. Scoarța afectată are aspect denivelat (prezintă umflături), lenticele exagerat de mari, scurgeri gomoase etc. De cele mai multe ori decolorarea nu este evidentă deoarece ciuperca ucide rapid scoarța. Uneori, fungul se dezvoltă atât de repede pe pomii stresați, încât leziunile nu sunt evidente și uneori chiar nu se formează. Scoarța de deasupra cambiului infectat apare ca fiind scufundată. Zona bolnavă poate avea diferite culori, de la galbenă, maronie, brună - roșietică, gri până la neagră, funcție de specia de Cytospora care s-a instalat. Scoarța interioară infectată și cambiul capătă culoare brună - roșietică chiar neagră uneori. Din cauza infecției, țesuturile devin apoase, spongioase și mirositoare, având aspect macerat. Lemnul de sub cambiu se colorează în maroniu [Spielman, 1983].

Leziuni canceroase

Leziuni canceroase

La cireș dar și la alte specii pomicole, culoarea lemnului bolnav este maronie - deschis, cafenie, uneori cenușie. Pe lângă aceste simptome apar scurgeri mucilaginoase, la suprafața scoarței, ce pot avea și ele culori diferite. De asemenea, sub scoarță pot fi observate corpurile fructifere asexuate ale ciupercii (picnidiile). Aceste corpuri fructifere au consistență tare, formă conică, culoare negricioasă. Pe parcursul formării lor, se poate vedea un punct albicios în vârf, iar de jur împrejur o zonă neregulată de culoare albă (disc stromatic). Această colorație dispare mai târziu, ele rămânând negre. De la o specie la alta de Cytospora, culorile pot fi diferite. Picnidiile se observă foarte ușor cu ochiul liber atunci când detașăm scoarța. Scoarța bolnavă se detașează cu ușurință de lemn, fiind distrusă de patogen. În condiții de umiditate (dar nu excesive), sporii din aceste structuri trec în exudatele gelatinoase de culoare chihlimbarie (la măr de exemplu) sau portocalii - roșietice (la cireș). Picăturile gelatinoase, în condiții de uscăciune pot lua forme diferite, dar cel mai adesea au aspectul unor fire subțiri care se înfășoară unul după celălalt sau nu. Uneori formează cârlionți sau bucle. De regulă, sunt localizate la marginea cancerelor. Scoarța moartă poate să rămână atașată de copac chiar și câțiva ani, apoi cade, desprinzându-se de trunchi în bucăți mari. În secțiune, lemnul ramurilor bolnave dar și al trunchiului, este brunificat. Zona brunificată poate fi mai mare sau mai mică funcție de evoluția infecției. Marginile zonei brunificate sunt de obicei abrupte [Sinclair et al., 1987; Bertrand, 1976].

Fructificații și scoarță brunificată

Fructificații și scoarță brunificată

 

Condiții preferate de patogen

 

După cum se cunoaște, citosporioza este o boală a sezonului de vară. Creșterile maxime ale fungului Cytospora sp. se realizează chiar și la temperaturi de 320C. Cancerul se dezvoltă cel mai bine la temperaturi ridicate (iulie - septembrie), perioadă în care creșterile pomilor sunt scăzute. Dacă în trecut, citosporioza era o boală a pomilor în declin, în prezent, tot mai des, boala este raportată și identificată la pomii tineri. Dintre speciile de Cytospora, în România cel mai frecvent a fost raportată Cytospora leucostoma (Pers.) Sacc. Prezența ei era raportată în trecut în special în livezile bătrâne și neîngrijite [Minoiu et Lefter, 1987]. Cytospora leucostoma era și este considerat un patogen relativ slab din punct de vedere al capacității de realizare a infecțiilor, deoarece nu poate infecta țesuturile sănătoase, ci doar pe cele lezate. Sporii acestui fung sunt răspândiți de picăturile de ploaie și de vânt, putând infecta orice tip de rană prezentă pe scoarța pomilor. Rănile de pe scoarță se pot datora arsurilor solare, cancerelor bacteriene mai vechi, orificiilor produse de insectele de scoarță și trunchi etc. Trebuie reținut faptul că acest patogen nu infectează scoarța sănătoasă și nedeteriorată, iar insectele care atacă scoarța sunt considerate vectori [Bertrand et English, 1976; Schulz et Schmidle, 1983]. Miceliul ciupercii crește în floem și în xilem, pe care le obturează. Scoarța pomilor poate fi atacată în timpul primăverii, toamnei și chiar al iernii (iernile blânde când pomii sunt în perioada de repaus vegetativ și nu se pot apăra). Sunt predispuși la infecție pomii afectați de secetă, arsuri solare, erbicide, vătămări mecanice. În mod special pot fi infectați pomii cu sistemul radicular lezat sau cei care sunt transplantați.

Fructificații care au erupt prin scoarță. Foto la măr

Fructificații care au erupt prin scoarță. Foto la măr

 

Managementul integrat al bolii

 

Când cancerul citosporian s-a instalat într-o livadă este foarte greu de controlat. De aceea, livezile trebuie monitorizate cu foarte mare atenție pentru a depista din timp patogenul. Pentru evitarea infecțiilor pomii trebuie menținuți sănătoși. Vectori importanți ai fungului Cytospora sp. sunt insectele care atacă scoarța. Am constatat și eu (la fel ca alți specialiști) că în livezile unde citosporioza s-a instalat este prezent și cariul scoarței Scolytus sp.. Acest dăunător trebuie monitorizat și combătut la timp. Din păcate, materialul de plantat vine uneori cu larve de Scolytus sub scoarță din pepiniere. Este valabil și pentru patogenii care produc cancere.

Cancere deschise

Cancere deschise

Metode profilactice

Deoarece Cytospora sp. infectează pomii slăbiți, stresați din diferite cauze, cea mai bună metodă de control este prevenirea stresului. Principalii factori de stres sunt seceta și lipsa oxigenării rădăcinilor prin inundarea solului cu apă. De asemenea, se pare că temperaturile ridicate sunt favorabile dezvoltării ciupercii. Alți factori de stres ce trebuie evitați: deficiența de potasiu, arsurile solare, nematozii Criconemella xenoplax, insectele de scoarță și trunchi, umiditatea excesivă a solului.

Infecția și răspândirea pot fi controlate prin evitarea stresului pomilor și prin eliminarea și distrugerea materialului lemnos infectat din livadă.

Lemn bolnav la cireș

Lemn bolnav la cireș

Prevenirea infecțiilor cu Cytospora sp. în livezi se face prin respectarea câtorva măsuri:

  • Solul trebuie pregătit înainte de plantare, fertilizat și udat în mod corespunzător;

  • Plantarea unor soiuri și specii adaptate zonei unde se face plantarea;

  • Materialul de plantat trebuie să fie sănătos și achiziționat din pepiniere recunoscute;

  • Evitarea plantării pomilor pe solurile argiloase, compacte;

  • Evitarea rănirii trunchiului, ramurilor. Rănile cauzate de mașinile care taie iarba, de insectele care atacă scoarța și trunchiul predispun la infecție. Livada trebuie îngrijită cu atenție, conform tehnologiilor;

  • Evitarea stresului hidric. În acest sens se pot face udări și după recoltat pentru ca pomii să nu sufere;

  • Combaterea patogenilor și dăunătorilor ce pot duce la defolierea prematură a pomilor. Defolierea prematură predispune pomii la arsurile solare;

  • Îndepărtarea ramurilor cu cancere în timpul perioadei de vegetație. După tăiere ele trebuie imediat distruse. Este greșit ca materialul lemnos bolnav să fie lăsat în grămezi la marginea livezii, cum am văzut în unele ferme pomicole. Fungul își continuă dezvoltarea pe lemnul mort asigurând o sursă de inocul permanentă pentru pomii sănătoși. Efectuarea tăierilor în timpul vegetației pomilor permite o identificare mai bună a ramurilor atacate. Tăierea unei ramuri bolnave se face cu câțiva centrimetri mai jos de zona bolnavă, acolo unde lemnul este sănătos. Dacă nu se face așa, patogenul își va continua dezvoltarea nestingherit;

  • Tăierile trebuie efectuate doar pe vreme uscată iar instrumentele utilizate trebuie șterse după fiecare tăiere cu soluție dezinfectantă (ex. hipoclorit de sodiu, alcool etilic sau alți dezinfectanți);

  • În cazul rănilor proaspete (o lună sau mai puțin), se va tăia cu un cuțit ascuțit bine porțiunea rănită pe când la rănilor vechi se va îndepărta doar scoarța desfăcută. Nu trebuie îndepărtat calusul care se formează la marginea cancerelor (arată ca o scoarță umflată care crește în zona moartă).

Dacă aceste reguli sunt respectate, pomii vor rezista mai bine la un eventual atac.

În livezile stresate, bolnave, acolo unde ramurile cu cancere nu sunt îndepărtate, boala se va dezvolta continuu, iar pomii vor muri. Lăstarii tineri pot muri chiar în primul an de infecție. Ramurile mai bătrâne au nevoie de câțiva ani până când daunele devin vizibile. În situațiile grave, fermierii trebuie să defrișeze suprafețele infectate puternic. Materialul lemnos rezultat trebuie scos din livadă și distrus ulterior. În caz contrar, va servi ca sursă de inocul pentru pomii sănătoși din livadă.

Picnidii sub scoarța de prun

Picnidii sub scoarța de prun

În concluzie, dacă infecția apare, cea mai bună metodă de control este creșterea vigorii pomilor și o igienă culturală riguroasă. Pe măsură ce patogenul se instalează, productivitatea pomilor scade, putând apărea pagube în producție cuprinse între 25 - 50% (Biggs & Grove, 2005).

Metode chimice

Combaterea chimică nu aduce rezultatele scontate. În prezent, numeroase studii se fac cu privire la eficacitatea tratamentelor chimice împotriva citosporiozei. Rezultatele acestor studii arată că totuși există diferențe între tratat și netratat. Cu toate acestea, patogenul nu poate fi ținut sub control. Chiar dacă eficacitatea unor fungicide nu a fost confirmată, ea nu este nici refuzată (Biggs et al., 1994).

Motivele pentru care controlul chimic preventiv este ineficient sunt multe. Dintre ele, motivul principal ar putea fi producția mare de spori a ciupercii care se întinde pe o perioadă lungă de timp. De asemenea, substanțele fungicide nu pot pătrunde în zona lemnului, neputându-se transloca în interiorul scoarței. Condițiile climatice sunt cele care pot favoriza sau defavoriza producția de spori, știut fiind că, în perioadele cu temperaturi și precipitații ridicate aceasta crește foarte mult și scade în cele cu temperaturi și precipitații scăzute (Biggs & Grove, 2005) .

Tratamentele preventive chimice constau în badijonarea leziunilor canceroase cu substanțe chimice. Este o muncă care necesită mult timp iar rezultatele nu sunt cele așteptate. De-a lungul timpului au fost testate produse fungicide ca: difenoconazol, captan, tiofanat - metil (retras) pentru plantațiile convenționale; polisulfură de calciu (retrasă din decembrie 2022), hidroxid de cupru, pentru plantațiile organice (Biggs & Grove, 2005). În cazul difenoconazolului, testele efectuate de Pokharel (2011) arată că acesta a controlat patogenul aproximativ un an de la efectuarea tratamentelor, dar nu a stopat infecțiile.

Cârcei roșietici plini de conidii. Pozați pe cireș

Cârcei roșietici plini de conidii. Pozați pe cireș

Tratamentele din perioada de repaus vegetativ executate cu hidroxid de cupru 50% pot preveni infecțiile cu Cytospora sp. Ele pot fi executate de la căderea frunzelor și până la apariția mugurilor florali. În România este omologat pentru combaterea citosporiozei doar un singur produs pe bază de hidroxid de cupru 50% pentru cireș, cais, prun, piersic, nectarin (după Aplicația PESTICIDE 2.24.1.1/2024). Cuprul are doar acțiune de contact, preventivă. Substanța trebuie să fie prezentă pe suprafața organelor plantelor înainte ca sporii să germineze. Nu are acțiune curativă.

La măr, păr, gutui sunt omologări doar pentru Nectria sp., un patogen care produce tot cancer. Dintre substanțele omologate pentru patogenul Nectria sp., amintesc aici câteva: cupru, oxiclorura de cupru, hidroxidul de cupru 50%, cupru metalic sub formă de hidroxid de cupru, sulfat de cupru tribazic, zeama bordeleză, difenoconazol + fluxapyroxad, fluopiram + fosetil de aluminiu, captan, pirimetanil, ciprodinil + fludioxonil. Aceste substanțe sunt utilizate frecvent în livezi pentru combaterea patogenilor. Deși în schemele de tratament din alte țări observ că sunt fungicide și pentru ținerea sub control a citosporiozei și în perioada de vegetație, în România patogenul parcă nu ar exista, iar fermierii nu îl cunosc. Totuși, Cytospora sp. este prezentă în livezi, ucide pomii, dar în schemele de tratament nu apare. Alături de Cytospora sp., fungii Phomopsis sp. și Botryosphaeria sp. sunt și ei prezenți. Toți produc cancere grave, dar nu sunt în schemele de tratament (cel puțin eu nu am văzut, posibil să fie).

Picnidii de Cytospora la cireș

Picnidii de Cytospora la cireș

În livezile unde pomii sunt infectați se recomandă efectuarea a 5 - 6 tratamente cu fungicide, după cum urmează:

  • Tratamentul 1 - imediat după efectuarea tăierilor;

  • Tratamentul 2 - la începutul verii;

  • Tratamentul 3 - mijlocul verii;

  • Tratamentul 4 - sfârșitul verii;

  • Tratamentul 5 - toamna;

  • Tratamentul 6 - începutul iernii.

Fungicidele utilizate trebuie amestecate cu un adjuvant. Rolul adjuvantului este de a îmbunătăți pătrunderea soluției prin scoarță. De asemenea, favorizează deschiderea lenticelelor, permițând astfel fungicidelor să pătrundă în sistemul vascular al pomilor (Pokharel & Laesen, 2009b).

În plantațiile unde se execută corect tratamentele de combatere a bolilor și dăunătorilor acest patogen nu ar trebui să existe.

ocotuna lab

 

Bibliografie

Adams G. C., Roux J., Wingfield M. J., 2006 - Cytospora species (Ascomycota, Diaporthales, Valsaceae): introduced and native pathogens of trees in South Africa, Australasian Plant Pathology 35: 521 - 548.
Adams G. C., Wingfield M. J., Common R., Roux J., 2005 - Phylogenetic relationships and morphology of Cytospora species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. Studies in Mycology 52: 1 - 144.
Bertrand, P. F. and H. English, 1976 - Release and dispersal of conidia and ascospores of Valsa leucostoma. Phytopathology 66:987 - 991.
Biggs, A. R., El Kholi, M. M., and El Neshawy, S. M. 1994 - Effect of calcium salts on growth, pectic enzyme activity, and colonization of peach twigs by Leucostoma persooni. Plant Dis. 78:886 - 890.
Biggs, A. R. and G. G. Grove, 2005 - Leucostoma canker of stone fruits. The Plant Health Instructor. DOI: 10.1094/PHI-I-2005-1220-01.
Bills G. F., 1996 - Isolation and analysis of endophytic fungal communities from woody plants, St. Paul, MN: American Phytopathologycal Society Press.
Christensen C. M., 1940 - Studies in the biology of Valsa sordida and Cytospora chrysosperma. Phytopathology 30: 459 - 475.
Fan X., Hyde K. D., Liu M., Liang Y., Tian C., 2015a - Cytospora species associated with walnut canker disease in China, with description of a new species C. gigalocus. Fungal biology, 119: 310 - 319.
Hawksworth D. L., 2011 - A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal name. IMA Fungus 2: 155 - 162.
Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A., (eds), 2008 - Ainsworth Bisby's Dictionary of the fungi, 10th edn. Walingford: CAB International.
Minoiu Nicolae, Lefter Gheorghe, 1987 - Bolile și dăunătorii speciilor sâmburoase, Editura Ceres, București, p. 191.
Pokharel, R. R. and H. J. Larsen - 2009b. Efficacy of plant and mineral oil against Cytospora Canker in peach. Phytopathology 99: S103.
Pokharel, R., 2011 - Cytospora canker management studies from 2007-2010. Annual Report of Western Colorado Research Center, TR11-11: 43-52.
Schulz, U., and A. Schmidle, 1983 - Zur Epidemiologie der Valsa-Krankheit. Agnew. Bot. 57:99 - 107.
Sinclair W. A., Lyon H. H., Johnson W. T., 1987 - Diseases of trees and shrubs. Ithaca, NY: Cornell University Press.
Spielman L. J., 1983 - Taxonomy and biology of Valsa species on hard woods of North America, with special reference to species on mapels. PhD Thesis, Cornell University.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

În această perioadă am analizat în laborator probe de floarea-soarelui din partea de sud a țării noastre. În zona de proveniență a probelor, floarea-soarelui de pe mii de hectare a căzut la sol din cauza atacului fungului Macrophomina phaseolina. Pagubele au fost foarte mari.

Atrag atenția că acest patogen, Macrophomina phaseolina, este foarte periculos mai ales atunci când condițiile climatice sunt favorabile infecțiilor, iar hibridul este sensibil.

Pe fondul climatic favorabil (temperaturile ridicate sunt preferate de patogen) și al sistemelor agricole bazate pe monocultură, apreciez că, în următorii ani, acest fung va produce pagube importante în culturile de floarea-soarelui și nu numai, având în vedere că este polifag.

Recomand fermierilor să aleagă hibrizi de floarea-soarelui rezistenți la infecțiile cu Macrophomina phaseolina.

Un studiu efectuat în acest an, împreună cu compania Bayer, a scos în evidență că hibrizii toleranți au avut o producție mulțumitoare, comparativ cu cei sensibili unde producția a fost foarte scăzută.

Măduvă consumată de patogen. Aspect de farfurii etajate

Măduvă consumată de patogen. Aspect de farfurii etajate

 

Macrophomina phaseolina este un nou patogen pentru România sau este doar necunoscut de fermieri?

Răspunsul este nu. Nu este un patogen nou pentru România. Macrophomina phaseolina (Tassi) Goid sau putrezirea cărbunoasă a rădăcinilor și tulpinilor de floarea-soarelui este un patogen care poate compromite producția de floarea-soarelui. Informațiile din materialul de față pot ajuta fermierii să prevină pierderile pe care acest patogen periculos le poate produce la floarea-soarelui, mai ales la hibrizii sensibili.

Fungul a fost raportat în multe țări, cum ar fi: Ungaria, România, Spania, Serbia, Italia, Bulgaria, Portugalia, Rusia, SUA, Cehia, Turcia, Slovacia [Csüllög et Tarcali, 2020]. Este adevărat că în România există puține studii cu privire la prezența patogenului în culturile de floarea-soarelui. În anul 1982, Comes et al. în cartea „Fitopatologie” nu descriu acest patogen la nicio plantă agricolă, deși în perioada 1981 - 1983 patogenul a creat probleme în multe țări din Europa [Tančić et al.,2012]. Mai târziu, Bontea (1985, 1986) descrie patogenul în cartea „Ciuperci parazite și saprofite din România”. În 1990, Docea et Severin descriu patogenul la trei plante agricole (porumb, floarea-soarelui, soia) în cartea „Ghid practic pentru recunoașterea și combaterea bolilor plantelor agricole”.

Pete argintii pe tulpina atacată. Se observă microscleroții de la suprafața epidermei

Pete argintii pe tulpina atacată. Se observă microscleroții de la suprafața epidermei

Un studiu interesant a fost publicat în anul 1996 de către Ioniță et al., cu privire la prezența acestui patogen în diferite culturi agricole din România (soia, floarea-soarelui, sfeclă, fasole, rapiță etc.). În cadrul acestui studiu, autorii au raportat frecvențe ridicate de atac ale fungului Macrophomina phaseolina la floarea-soarelui între anii 1992 și 1994, cuprinse între 46,5% și 92,7%. În anul 2021, patogenul a fost raportat în mai multe culturi de floarea-soarelui din vestul României unde a produs pagube majore, unele culturi fiind compromise în totalitate [Cotuna et Sărățeanu, 2021; Cotuna et al., 2022].

 

De ce este tot mai prezent fungul în culturile de floarea-soarelui din România?

 

Tendința de extindere a acestui patogen (specific zonelor calde) către zonele temperate a ieșit în evidență în ultimii ani, fiind raportate tot mai des pagube mari în culturile din aceste zone, unde patogenul nu se instala decât ocazional, în anii cu condiții climatice favorabile [Wrather et al. 1995; Manici et al., 2012]. Pe fondul creșterii temperaturilor și a lipsei apei din sol, patogenul Macrophomina phaseolina se extinde încet și sigur în zonele cu climat relativ răcoros. În zonele temperate, patogenul își face simțită prezența din ce în ce mai des, nu doar sporadic, cum se întâmpla mai demult.

Caracterul invaziv al patogenului M. phaseolina reiese din cele mai multe studii analizate. Pe lângă asta, numărul mare de plante-gazdă, distribuția la nivel global, schimbările climatice arată că fungul prezintă importanță deosebită pentru viitorul culturii de floarea-soarelui și nu numai [Cotuna et al., 2022].

Plante frânte. Hibrid sensibil

Plante frânte. Hibrid sensibil

În România, pe fondul modificărilor climatice, al creșterii temperaturilor peste mediile multianuale, Macrophomina phaseolina și-ar putea face simțită prezența în culturile de floarea-soarelui în fiecare an. Asta nu ar fi bine deloc, deoarece patogenul este greu de ținut sub control. La condițiile de climă pot fi adăugate condițiile de sol, înrădăcinarea defectuoasă a plantelor, carențele de bor, știut fiind că patogenul se instalează cu ușurință pe plantele afectate de fiziopatii [Popescu, 2005].

Modificările climatice actuale (în special creșterea temperaturilor) ar putea influența pozitiv patosistemul Macrophomina phaseolina (Tassi) Goid. - Helianthus annus L. în zonele cu climat moderat. În astfel de zone, Macrophomina phaseolina produce infecții doar în anii în care se înregistrează temperaturi ridicate și uscăciune. Astfel de situații au fost raportate în anii 1981 - 1983 în aproape toate țările europene, mai puțin Polonia [Tančić et al.,2012]. Coakley et al. (1999) susțin că modificările climatice pot avea impact direct asupra patogenilor din cultura de floarea-soarelui, susținând infecțiile. Vremea caldă și secetoasă stimulează patogenul Macrophomina phaseolina. După Sarova et al. (2003), condițiile de vreme caldă și uscată (temperaturi cuprinse între 28 și 300C și lipsa apei din sol) favorizează instalarea fungului.

Simptome produse de Macrophomina phaseolina la baza plantei de floarea-soarelui

Simptome produse de Macrophomina phaseolina la baza plantei de floarea soarelui

În general, fungii care rezistă în sol sub formă de scleroți perioade lungi ar putea tolera mult mai ușor condițiile climatice nefavorabile (seceta, de exemplu). Lipsa apei din sol ar putea predispune plantele de floarea-soarelui la atacul agenților patogeni sistemici care distrug și blochează vasele [Vear, 2016; Debaeke et al., 2017].

 

Recunoașterea simptomelor

 

Fungul M. phaseolina infectează plantele de floarea-soarelui în primele stadii de dezvoltare, dar simptomele nu apar decât spre sfârșitul perioadei de înflorire [Meyer et al., 1974; Docea et Severin, 1990]. Discutăm despre o infecție latentă, în cazul acestui fung. Studiile arată că, de cele mai multe ori, plantele care aparent prezintă o bună dezvoltare în primele stadii vor prezenta simptome severe la maturitate. Plantele infectate se vor matura timpuriu, vor avea calatidii mai mici, uneori deformate și un număr redus de achene. În zona centrală a calatidiului multe flori sunt avortate [EPPO, 2000].

Fungul pătrunde inițial în rădăcinile secundare și terțiare, după care ajunge în rădăcina primară. În urma infecției, în sistemul fibrovascular al rădăcinilor și internodurilor bazale transportul nutrienților și al apei va fi blocat de fung. Plantele cu rădăcini bolnave pot fi smulse cu ușurință din sol, iar uneori pier. La suprafața rădăcinilor bolnave, dar și în interior, se formează microscleroți de culoare neagră [Ahmad et Burney, 1990; Docea et Severin, 1990].

Simptome la baza plantelor (august 2023)

Simptome la baza plantelor august 2023

Primele simptome apar spre sfârșitul stadiului de înflorire al florii-soarelui, fiind vizibile pe tulpini și rădăcini. Tulpinile prezintă simptome în zona bazală sau în treimea inferioară [Docea et Severin, 1990; Popescu, 2005]. La suprafața tulpinilor atacate apare o decolorare cenușie cu reflexe argintii uneori, tipică acestui agent patogen. În țesuturile infectate fungul va forma numeroși microscleroți de culoare neagră, ce dau aspect cenușiu - negricios, asemănat de unii autori cu o pulbere fină de cărbune. Măduva din partea inferioară a tulpinilor capătă aspect negricios datorită microscleroților [Yang et Owen, 1982; Kolte, 1985; Khan, 2007]. În zona infectată, fungul poate distruge măduva în totalitate. Uneori se observă că măduva nu este distrusă în totalitate, dar este desfăcută în discuri cu aspect de „farfurii etajate” [Docea et Severin, 1990; Popescu, 2005]. De asemenea, epiderma bolnavă se desprinde cu ușurință de tulpină. Sub epiderma infectată, cât și la suprafață se observă cu ușurință microscleroții negri care se formează din abundență. Microscleroții dau aspect negru-cenușiu, cărbunos țesuturilor atacate [Sinclair, 1982; Kolte, 1985]. În cazurile grave, Csüllög et al. (2020) arată că tulpinile bolnave au aspect carbonizat. Pe lângă microscleroți, ciuperca poate forma picnidii pe tulpini, dar asta se întâmplă mai rar în condiții naturale.

Plante uscate . Se observă calatidiile foarte mici

Plante uscate . Se observă calatidiile foarte mici

Plantele bolnave se pot ofili începând de la înflorit până la maturitatea plantelor. Cu cât frecvența plantelor atacate este mai ridicată, iar hibrizii sensibili, pierderile de producție pot fi foarte mari (Prioletta et Bazzalo, 1998).

 

Supraviețuirea fungului și condițiile climatice în care se realizează infecțiile

 

Macrophomina phaseolina rezistă în sol sub formă de microscleroți, pe resturile vegetale, dar și în masa de semințe [EPPO, 2000; Csüllög et al., 2020; Popescu, 2005; Docea et Severin, 1990]. Microscleroții pot supraviețui în sol de la doi până la 15 ani [Baird et al., 2003; Gupta et al., 2012; Csüllög et al., 2020].

Infecțiile sunt influențate în principal de temperatură, mai ales de temperaturile solului de peste 28 0C și de precipitații [EPPO, 2000]. De aceea, plantele de floarea-soarelui pot fi atacate de Macrophomina phaseolina în perioadele secetoase și cu temperaturi ridicate (preferate). Temperatura, umiditatea atmosferică și cea disponibilă sunt foarte importante în realizarea infecțiilor cu Macrophomina phaseolina. După Marquez et al. (2021), microscleroții germinează la temperaturi cuprinse între 30 - 35 0C.

Sute de microscleroți negricioși în epiderma tulpinilor bolnave

Sute de microscleroți negricioși în epiderma tulpinilor bolnave

Când plantele sunt tinere (primele stadii de dezvoltare), fungul le poate infecta în 24 - 48 ore în condiții de temperatură scăzută și umiditate ridicată. Chiar dacă sunt infectate, la tinerele plăntuțe simptomele nu sunt vizibile. Fungul evoluează lent în plantele atacate până la formarea achenelor. Manifestarea bolii la exterior sau apariția simptomelor tipice are loc în perioada de formare a semințelor, când umiditatea este scăzută și temperatura ridicată [Ahmed, 1996; Khan, 2007].

Scenariile climatice realizate în Europa arată că, creșterea temperaturilor în zonele cu climat temperat, însoțită de lipsa precipitațiilor ar putea crea probleme deosebite în culturile de floarea-soarelui, făcându-le vulnerabile la atacul patogenului M. phaseolina [Debaeke et al., 2017]. Acesta reușește să supraviețuiască în condițiile menționate datorită microscleroților pe care îi formează în țesuturile gazdei (rădăcini și tulpini) [Cook et al., 1973; Short et al., 1980].

Plante uscate cu calatidiu foarte mic - august 2023, Timiș

Plante uscate cu calatidiu foarte mic august 2023 Timiș

 

Alți factori care predispun plantele la infecție

 

Densitatea ridicată, rănile mecanice, atacul insectelor sunt factori care favorizează instalarea patogenului [Shiekh et Ghaffar, 1984; Ahmed et al., 1991]. Popescu (2005) arată că fungul infectează în general plantele cu afecțiuni fiziopatice, la care creșterea rădăcinii principale este stopată iar rădăcinile secundare încep să îmbătrânească. La aceste plante, sistemul radicular va fi ocupat de Fusarium sp., dar și de alte ciuperci care pregătesc astfel țesuturile radiculare pentru infecția cu Macrophomina phaseolina. Aproape întotdeauna, pe rădăcinile atacate de fung se observă micelii albe - rozii specifice fungului Fusarium sp.

 

Managementul integrat al patogenului M. phaseolina

 

Managementul integrat constă într-o sumă de măsuri de combatere ce pot fi utilizate echilibrat pentru a proteja mediul, entomofauna utilă, sănătatea oamenilor și animalelor.

În managementul putrezirii cărbunoase a florii-soarelui este esențială utilizarea unei strategii de combatere care să includă măsurile de prevenție, măsurile biologice și mai puțin măsurile chimice (ineficiente de cele mai multe ori). Doar așa pot fi evitate pierderile pe care patogenul este capabil să le producă, cât și impactul pesticidelor asupra mediului (în cazul utilizării excesive) - Vimal et al., 2017.

Plante frânte din cauza bolii

Plante frânte din cauza bolii

Abordarea metodelor profilactice și biologice este esențială în prezent. Noile cercetări cu privire la agenții biologici de control sunt încurajatoare, deși sunt necesare mai multe teste în condiții naturale de câmp.

Metode profilactice

Cele mai importante în combaterea acestui fung extrem de periculos și greu de combătut sunt măsurile de prevenție sau profilactice [Hafeez și Ahmad, 1997]. Aceste măsuri sunt: alegerea unui hibrid rezistent sau tolerant la boală, irigarea culturilor în condiții de secetă și temperaturi ridicate, distrugerea resturilor vegetale infectate (sunt pline de microscleroți), înființarea culturilor în soluri cu textură corespunzătoare, respectarea rotației culturilor. Cu privire la rotație, nu întotdeauna rezultatele sunt cele scontate din cauza polifagiei ciupercii, care are capacitatea de a infecta peste 300 de plante cultivate și buruieni [Francl et al., 1988; EPPO, 2000; Popescu, 2005]. Pe lângă măsurile amintite, se recomandă utilizarea la semănat de sămânță liberă de microscleroți, lucrări ale solului de calitate superioară, igiena culturală [Docea et Severin, 1990].

Metode chimice

Deoarece controlul chimic al acestui fung este foarte dificil (lipsa fungicidelor care să combată patogenul la nivelul sistemului radicular), numeroase studii se fac pe această temă [Chamorro et al., 2015a; Lokesh et al., 2020; Marquez et al., 2021]. Experimentele realizate în laborator de către Csüllög et Tarcali (2020) arată că nu există fungicide eficiente împotriva acestui fung. În cadrul studiului au fost testate câteva fungicide: azoxystrobin, ciproconazol, procloraz și piraclostrobin (unele au fost retrase între timp). Dintre ele, doar proclorazul a oprit creșterea hifelor și a microscleroților. Concluzia studiului a fost că doar rezistența genetică ar putea da rezultate în combatere.

În solurile infectate se pot face fumigări cu substanțe aprobate. Această metodă este destul de costisitoare și poluantă, fiind utilizată pe scară redusă [Lokesh et al., 2020].

După recoltat. Calatidiile plantelor bolnave se observă că au rămas la sol. La hibrizii sensibili producția a fost diminuată cu peste 50%

După recoltat. Calatidiile plantelor bolnave se observă că au rămas la sol. La hibrizii sensibili producția a fost diminuată cu peste 50

Metode nonpoluante

Biofumigația ar putea fi o alternativă pentru gestionarea patogenului M. phaseolina la floarea-soarelui. Biofumigația constă în cultivarea și încorporarea unei Brassicaceae (cultură de acoperire) în sol pentru a produce substanțe biocide. Studii foarte recente arată efectele biocide ale izotiocianaților (isothiocyanates) asupra fungilor patogeni din sol [Ait-Kaci et al., 2020]. Eficacitatea biofumigării este oscilantă fiind influențată de mulți factori arată Motisi et al. (2010). Același autor aduce în atenție creșteri ale intensității de atac ale unor patogeni după biofumigație. De aceea sunt necesare studii mai numeroase care să ateste că biofumigarea este eficientă în controlul patogenilor din culturile de floarea-soarelui și să evidențieze posibilele dezavantaje ale acestei metode [Ait-Kaci et al., 2020].

O altă metodă nonpoluantă ce poate fi utilizată este solarizarea terenului infectat. Greu de aplicat și această metodă pe suprafețe mari. Pe lângă asta, terenul nu poate fi cultivat pe perioada solarizării.

Metode biologice

În sistemele de combatere integrată a patogenilor din cultura de floarea-soarelui, agenții biologici (fungi, bacterii, virusuri) pot înlocui unele tratamente chimice. În acest sens se fac multe testări în laborator cu privire la eficacitatea în combatere a unor antagoniști (fungi și bacterii), dar și a micorizelor. Se cunoaște de mult timp că micorizele arbusculare au efecte benefice asupra plantelor, favorizând absorbția nutrienților și protejând plantele de atacul unor patogeni și dăunători [Karthikeyan et al., 2016; Marquez et al., 2019; Cotuna et al., 2013]. În cazul florii-soarelui s-a constatat că simbioza cu micorizele arbusculare nu poate opri infecția cu M. phaseolina [Spagnoletti et al., 2017; 2020].

Fungii antagoniști Trichoderma viride și Trichoderma harzianum s-au dovedit a fi eficienți pentru controlul fungului M. phaseolina [Alice et al., 1996]. În general, ciupercile din genul Trichoderma s-au dovedit agenți biologici de control eficienți [Hyder et al., 2017]. Dintre speciile de Trichoderma, T. longibrachiatum, prin inhibarea directă dar și cu ajutorul compușilor organici volatili microbieni (antibioză), a redus creșterile miceliene ale patogenului M. phaseolina, prin modificarea structurii acestora [Sridharan et al.,2020]. Eficacitate foarte bună s-a înregistrat în cazul combinațiilor dintre fungul Trichoderma harzianum și bacteria Pseudomonas fluorescens, care au redus germinația scleroților ciupercii în condiții naturale în procent de 60% [Sristava et al., 1996].

Secțiune în rădăcină. Se observă microscleroții în țesutul lignificat

Secțiune în rădăcină. Se observă microscleroții în țesutul lignificat

Agenții biologici bacterieni din zona rizosferei sunt tot mai mult testați pentru combaterea biologică a fungului M. phaseolina. Unele rizobacterii și-au dovedit capacitatea de a inhiba creșterea acestui fung. Astfel, Bacillus amyloliquefaciens și Bacillus siamensis au demonstrat efect fungistatic foarte bun asupra scleroților fungului [Torres et al., 2016; Hussain et Khan, 2020]. După Simonetti et al. (2015), rizobacteriile Pseudomonas fluorescens și Bacillus subtilis pot inhiba M. phaseolina conform testelor efectuate in vitro și in vivo. Un studiu recent arată că B. contaminans ar opri dezvoltarea fungului M. phaseolina prin reducerea patogenității [Zaman et al., 2020].

 

Despre patogenul Macrophomina phaseolina am mai scris și în anul 2021, găsiți toate detaliile aici.

Bibliografie
Ait-Kaci, Ahmed, N., Dechamp-Guillaume, G, Seassau, C., 2020, Biofumigation to protect oilseed crops: focus on management of soilborne fungi of sunflower. OCL 27: 59.
Ahmad, I., Burney, K., 1990, Macrophomina phaseolina infection and charcoal rot development in sunflower and field conditions. 3rd International Conference Plant Protection in tropics. March 20 - 23, Grantings, Islands Paeau, Malaysia.
Ahmad, I., Burney, K., Asad, S., 1991, Current status of sunflower diseases in Pakistan. National Symposium on Status of Plant Pathology in Pakistan. December 3 - 5, 1991, Karachi, P. 53.
Ahmad, Y., 1996, Biology and control of corn stalk rot. Ph.D. Thesis, Department of Biological Science, Quaid-i-Azam University, Islamabad, Pakistan.
Alice, D., E. G., Ebenezar, K., Siraprakasan, 1996, Biocontrol of Macrophomina phaseolina causing root rot of jasmine. J. Ecobiol., 8: 17 – 20.
Baird, R., E., Watson, C., E., Scruggs, M., 2003, Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis. 87: 563 – 566.
Bontea, V., 1985, Ciuperci parazite și saprofite din România, vol. I, Editura Acad. R. S. R., București, 590 p.
Bontea, V., 1986, Ciuperci parazite și saprofite din România, vol. II, Editura Acad. R. S. R., București, 474 p.
Chamorro, M., Domínguez, P., Medina, J., J., Miranda, L., Soria, C., Romero, F., et al., 2015a, Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Sci. Hortic. (Amsterdam) 192, 361 – 368.
Coakley, S., M., Scherm, H., Chakraborty, S., 1999, Climate change and plant disease management. Annu Rev Phytopathol 37: 399 – 426.
Cook, G., E., Boosalis, M., G., Dunkle, L., D., Odvody, G., N., 1973, Survival of Macrophomina phaseoli in corn and sorghum stalk residue. Plant Dis. Rep. 57: 873 – 875.
Comes, I., Lazăr, A., Bobeș, I., Hatman, M., Drăcea, A., E., 1982, Fitopatologie, Editura Didactică și Pedagogică București, 455 p
Cotuna, O., Sărățeanu, V., Durău C., 2013, Influence of arbuscular mycorrhizae (AM) colonization on plant growth: Plantago lanceolata L., case study, Journal of Food, Agriculture & Environment, vol. 11 (3&4): 2005 – 2008.
Cotuna, O., Sărățeanu, V., 2021, Putrezirea cărbunoasă a rădăcinilor și tulpinilor de floarea soarelui - Macrophomina phaseolina (Tassi) Goidanich cu forma microscleroțială Rhizoctonia bataticola (Taubenhaus) E. J. Butler, Agricultura Banatului nr. 3 (148), 77 - 82, Editura Agroprint, ISSN - L - 1483 - 1313; ISSN 2559 - 1614 (online).
Cotuna, Otilia, Paraschivu, Mirela, Sărățeanu, Veronica, 2022, Charcoal rot of the sunflower roots and stems (Macrophomina phaseolina (Tassi) Goid.) - an overview, Scientific papers - Series management economic engineering in agriculture and rural development, volume 22, Issue 1, 2022, ISSN 2284-7995, eISSN 2285-3952, 107 - 116.
Csüllög, K., Tarcali, G., 2020, Investigation of the mycelial compatibility of Macrophomina phaseolina. Folia Oecologica, 47 (2): 153 – 158.
Csüllög, K., Tarcali G., 2020, Examination of different fungicides against Macrophomina phaseolina in laboratory conditions, Acta Agraria Debreceniensis 2020 - 2, 65 - 69.
Csüllög, K., Racz, E., D., Tarcali, G., 2020, The Charcoal rot disease (Macrophomina phaseolina (Tassi) Goid.) in Hungary, Characterization of Macrophomina phaseolina fungus, National Seminar on Recent Advances in Fungal Diversity, Plant - Microbes Interaction and Disease Management At: Banaras Hindu University, Varanasi, India.
Debaeke, P., Casadebaig, P., Flenet, F., Langlade, N., 2017, Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL, 2017, 24(1) D102.
Docea, E., Severin, V., 1990, Ghid pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, București, p. 137, 320 p.
Francl, L., J., Wyllie, T., D., Rosenbrock, S., M., 1988, Influence of crop rotation on population density of Macrophomina phaseolina in soil infested with Heterodera glycines. Plant Dis. 72, 760 – 764.
Gupta, G., K., Sharma, S., K., Ramteke, R., 2012, Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 160, 167 –180.
Hafeez, A., Ahmad, S., 1997, Screening of sunflower germplasm for resistance to charcoal rot in Pakistan. Pak. J. of Phytopathology 9:74 - 76.
Hussain, T., Khan, A., A., 2020, Determining the antifungal activity and characterization of Bacillus siamensis AMU03 against Macrophomina phaseolina (Tassi) Goid. Indian Phytopathol. 73, 507 – 516.
Hyder, S., Inam-ul-haq, M., Bibi, S., Humayun, A., 2017, Novel potential of Trichoderma spp. as biocontrol agent. J. Entomol. Zool. Stud. 5, 214 – 222.
Ioniță, A., Iliescu, H., Kupferberg., S., 1996. Macrophomina phaseolina – one of the main pathogens of sunflower crop in Romania. In Proceedings of the 14th international sunflower conference. Beijing, China, June 12–20, 1996. Shenyang: ISA, p. 718 – 723.
Khan, S. N., 2007, Macrophomina phaseolina as causal agent for charcoal rot of sunflower, Mycopath (2007) 5 (2): 111 - 118.
Karthikeyan, B., Abitha, B., Henry, A., J., Sa, T., Joe, M., M., 2016, “Interaction of Rhizobacteria with Arbuscular Mycorrhizal fungi (AMF) and their role in stress abetment in agriculture,” in Recent Advances on Mycorrhizal Fungi, ed. M. C. Pagano (Cham: Springer), 117–142.
Kolte, S., J., 1985, Diseases of annual edible oilseed crops. Vol. II. Boca Raton, Florida: CRC Press, p. 33 – 44.
Lokesh, R., Rakholiya, K., B., Thesiya, M., R., 2020, Evaluation of different fungicides against Macrophomina phaseolina (Tassi) goid. causing dry root rot of chickpea (Cicer arietinum L.) in vitro. Artic. Int. J. Curr. Microbiol. Appl. Sci. 9, 1 – 11.
Manici, L., M., Donatelli, M., Fumagalli, D., Lazzari, A., Bregaglio, S., 2012, Potential response of soil-borne fungal pathogens affecting crops to scenarios of climate change in Europe, International Environmental Modelling and Software Society (iEMSs),2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) disponibil pe http://www.iemss.org/soc.../index.php/iemss-2012-proceedings, 9 p.
Marquez, N., Giachero, M., L., Declerck, S., Ducasse, D., A., 2021, Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant Sci. 12:634397.
Motisi, N., Doré, T., Lucas, P., Montfort, F., 2010, Dealing with the variability in biofumigation efficacy through an epidemiological framework. Soil Biol Biochem 42, 2044 – 2057.
Popescu, G., 2005, Tratat de patologia plantelor, vol II, Agricultură, Editura Eurobit, p. 143, 341 p.
Prioletta, S., Bazallo, M., E., 1998, Sunflower basal stalk rot (Sclerotium bataticola): Its relationship with some yield component reduction. Hellia 21: 33 - 44.
Sarova, J., Kudlikova, I., Zalud, Z, Veverka, K., 2003, Macrophomina phaseolina (Tassi) Goid moving north temperature adaptation or change in climate? J Plant Dis Prot 110: 444 – 448.
Simonetti, E., Viso, N. P., Montecchia, M., Zilli, C., Balestrasse, K., Carmona, M., 2015, Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol. Res. 180, 40–48.
Sinclair, J. B., 1982, Compendium of Soybean disease. 2nd Ed. by American Phytopathology Society, St. Paul, Minnesota, USA.
Shiekh, A., H., Ghaffar, A., 1984, Reduction in variety of sclerotia of Macrophomina phaseolina with polyethylene mulching of soil. Soil Biology and Biochemistry 16: 77 - 79.
Short, G. E., Wyllie, T. D., Bristow, P. R., 1980, Survival of Macrophomina phaseolina in soil and residue of soybean. Phytopathology 70: 13 – 17.
Spagnoletti, F., Carmona, M., Gómez, N. E. T., Chiocchio, V., Lavado, R. S., 2017, Arbuscular mycorrhiza reduces the negative effects of Macrophomina phaseolina on soybean plants in arsenic-contaminated soils. Appl. Soil Ecol. 121, 41 –47.
Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., Roberts, I. N., 2020, Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur. J. Plant Pathol. 156, 839 – 849.
Srivastava, A. K., Arora, D. K., Gupta, S., Pandey, R. R., Lee, M., 1996, Diversity of potential microbial parasites colonizing sclerotia of Macrophomina phaseolina in soil. Biol. Fertil. Soils. 22: 136 - 140.
Tančić, Sonja, Boško, Dedić, Aleksandra, Dimitrijević, Sreten, Terzić, Siniša, Jocić, 2012, Bio-Ecological relations of sunflower pathogens – Macrophomina phaseolina and Fusarium spp. and sunflower tolerance to these pathogens, Romanian Agricultural Research, NO. 29, Print ISSN 1222-4227; Online ISSN 2067-5720, 349 - 359.
Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., Audisio, M. C., 2016, Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol. Res. 182, 31–39.
Vear, F., 2016, Changes in sunflower breeding over the last fifty years. OCL 23 (2): D202.
Vimal, S. R., Singh, J. S., Arora, N. K., and Singh, S., 2017, Soil-Plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27, 177 – 192.
Zaman, N. R., Kumar, B., Nasrin, Z., Islam, M. R., Maiti, T. K., Khan, H., 2020, Proteome analyses reveal Macrophomina phaseolina ’s survival tools when challenged by Burkholderia contaminans N Z. A C S Omega 5, 1352 – 1362.
Yang, S. M., Owen D. F., 1982, Symptomology and detection of Macrophomina phaseolina in sunflower plants parasitized by Cylendrocopturus adspersus larvae. Phytopathology 72: 819 - 821.
***EPPO Standard, European and Mediterranean Plant Protection Organization PP 2/21(1), 2000 - Guidelines on good plant protection practice - Sunflower, 9 p.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

În anul agricol 2022 - 2023, culturile de grâu, orz și ovăz din vestul României, dar și din alte zone, au prezentat simptome din cauza unor infecții virale. Simptomele prezente în perioada amintită au fost confundate cu cele produse de stresul climatic sau au fost atribuite unor virusuri (Wheat streak mosaic virus cel mai adesea), fiind exclusă oarecum prezența virusului BYDV (Barley Yellow Dwarf Virus - piticirea și îngălbenirea grâului și orzului, înroșirea ovăzului).

Ne amintim că, toamna 2022 și iarna 2023 au fost caracterizate de un climat blând, extrem de favorabil dezvoltării afidelor care ulterior au transmis virusul BYDV. Primăvara 2023 a fost una răcoroasă. Vremea răcoroasă a favorizat și exacerbat simptomatologia virală, fenomenele de înroșire sau învinețire a frunzelor fiind prezente alături de alte simptome specifice. Incidența și severitatea infecțiilor au fost ridicate mai ales la grâul semănat devreme. Pe fondul climatic favorabil infecțiilor, a tehnologiilor intensive de cultivare și a monoculturii, virusul BYDV a fost nelipsit din culturile de grâu, orz și ovăz.

În România, în literatura de specialitate sunt menționate trei virusuri care apar frecvent în culturile de cereale: Barley stripe mosaic virus – BSMV, Barley yellow dwarf virus – BYDV și Wheat streak mosaic virus – WSMV (Popescu, 2005).

daunatori grau

Pentru a elimina confuziile ce pot apărea în punerea unui diagnostic pentru o infecție virală (datorită simptomelor foarte asemănătoare), la USV „Regele Mihai I” din Timișoara am hotărât să identificăm virusul prezent în culturi cu ajutorul testelor ELISA (teste imuno - enzimatice). Analizele pentru identificare s-au realizat la Platforma de Cercetare Multidisciplinară a USVT pentru cele trei virusuri amintite mai sus. Soluțiile necesare testelor au fost pregătite cu sprijinul Laboratorului de Chimie din cadrul Facultății de Agricultură. Pentru identificare au fost utilizate teste DAS (Double Antibody Sandwich) ELISA achiziționate cu sprijinul a doi fermieri din Timiș.

În urma efectuării testelor, toate probele au ieșit pozitive la virusul BYDV și negative la BSMV și WSMV. Rezultatele obținute au arătat clar prezența în culturile de grâu, orz și ovăz din Banat a virusului BYDV în anul agricol 2022 - 2023. Din cauza infecțiilor din perioada înspicatului, pagubele în producțiile de grâu au trecut pe alocuri de 30%. La culturile infectate din toamnă, pagubele au fost mult mai mari, unii fermieri fiind nevoiți să întoarcă culturile la începutul primăverii deoarece plantele prezentau simptome evidente de stagnare în creștere. Ay et al. (2008) arată că, foarte des la analize este detectat virusul BYDV transmis de afide, în timp ce alte virusuri sunt prezente foarte rar sau niciodată. Aceeași autori susțin că, prezența frecventă în plante a BYDV sugerează că data semănatului este critică în controlul bolilor virale la cereale, iar soiurile de grâu se comportă diferit la infecții.

grau ruginit

În anul agricol 2022 - 2023, apreciez că ne-am confruntat cu o epidemie de BYDV în Banat (unde cunosc mai bine situația). În urma discuțiilor cu fermieri din țară mi-am dat seama că virusul a fost prezent în toate zonele de cultură a cerealelor păioase.

Pentru a preveni infecțiile cu BYDV din anul agricol 2023 - 2024, aducem în atenția dumneavoastră câteva aspecte importante despre acest virus periculos al cerealelor, mai ales că toamna 2023 este una blândă, favorabilă infestării cu afide (vectorii virusurilor).

 

Recunoașterea simptomelor produse de BYDV

 

Marea majoritate a fitopatologilor arată că simptomele produse de BYDV nu sunt ușor de identificat din cauza asemănării cu unele carențe în nutriție, stres climatic sau infecții produse de alte virusuri (D’Arcy, 1995; Popescu, 2005; Miller et al., 2002).

Principalele simptome produse de BYDV sunt: îngălbenirea vârfului și marginilor frunzelor, stagnarea în creștere a plantelor (piticire), sistem radicular slab dezvoltat, stoparea înfrățirii sau formarea întârziată a fraților, sterilitatea spicelor, rigiditatea frunzelor îngălbenite (au port erect), înroșirea vârfului frunzelor (Rochow, 1970a; D’Arcy, 1995; Miller și Rasochová, 1997; Lapierre, 2004; Popescu, 2005; Domier, 2009; Kaddachi et al., 2014).

La orz, virusul poate fi recunoscut mai ușor vizual, deoarece petele galbene sunt distribuite neuniform de-a lungul frunzei (Shah et al., 2012).

Simptomele menționate pot fi influențate de condițiile climatice, de soi, de tipul de cultură, de starea de sănătate a plantelor de la momentul infecției etc (Kaddachi et al., 2014).

Simptome de îngălbenire și înroșire a frunzelor la înspicat - primăvara 2023, Timiș

Simptome de îngălbenire și înroșire a frunzelor la înspicat. Primăvara 2023 Timiș

Cu privire la condițiile climatice, Shah et al. (2012) arată că, temperaturile mai scăzute influențează simptomele, producând înroșirea frunzelor la grâu. Acest fenomen de înroșire l-am observat și eu în toate culturile de grâu controlate și nu numai. Înroșirea frunzelor s-a manifestat și la orz și la ovăz. Popescu (2005) nu descrie fenomenul de înroșire la grâu și orz, ci doar la ovăz. De aici și confuziile din primăvara 2023, când marea majoritate a fermierilor credeau că se confruntă cu stres climatic produs de vremea răcoroasă.

În culturile de grâu verzi, plantele infectate pot fi observate sub forma unor depresiuni (plantele infectate sunt mai mici). Plantele infectate toamna au frunze galbene și sunt pitice. De obicei, în urma acestei infecții plantele bolnave nu mai formează spice, iar dacă formează, vor fi sterile. Când infecția se realizează primăvara, plantele au frunze îngălbenite, dar fenomenul de piticire nu se manifestă. Îngălbenirea începe de la vârful frunzelor și se extinde către bază, nervurile rămânând verzi (din cauza asta apar și confuziile cu alte virusuri). La infecțiile din timpul primăverii, piticirea nu este atât de evidentă dar producțiile vor fi scăzute (Popescu, 2005).

 

Realizarea infecțiilor, vectori, plante gazdă

 

BYDV (particulele virale) este restricționat sau limitat la floemul gazdelor. În urma infecției, celulele floemului mor. Virionii sau particulele virale ajung în celulele floemului prin intermediul afidelor, care sunt vectori. Degenerarea floemului duce la apariția simptomelor tipice, inducând pierderea clorofilei și stagnarea în creștere a plantelor (D’Arcy et Domier, 2005; Popescu, 2005).

Afid alat (aripat) care poate transmite virusul la distanțe mari

Afid alat aripat care poate transmite virusul la distanțe mari

Este important să rețineți că, epidemiile de BYDV au legătură strânsă cu zborul afidelor și mărimea populațiilor. Pentru a putea transmite virusul, afidele trebuie să se hrănească pe plantele infectate (doar așa particulele virale ajung în corpul lor). Urmează o perioadă latentă de câteva ore în care afidele nu pot transmite virusul altei plante (Gray et Gildow, 2003; Brault et al., 2010). Deoarece virusul circulă în corpul afidelor și poate fi reținut zile sau chiar săptămâni, acest mod de transmitere a fost numit circulativ sau persistent. Afidele virulifere pot răspândi virusul la mai multe plante pe măsură ce se deplasează și se hrănesc (D’Arcy et Domier, 2005). Cele aptere (fără aripi) vor infecta plante noi în cultură. Cele aripate sau alate apar de cele mai multe ori când plantele sunt deja afectate de virus. Ele pot zbura în căutarea altor gazde, transmițând virusul la distanțe mari.

Există mai multe specii de afide în care virusul persistă. Dintre acestea, vectorii cei mai importanți sunt afidele Rhopalosiphum padi, Rhopalosiphum maidis, Schizaphis gramineum, Sitobion avenae și Metopolophium dirhodum (Gildow, 1999; Gray et Gildow, 2003).

Condițiile climatice sunt foarte importante pentru realizarea infecțiilor cu BYDV, cât și pentru dezvoltarea afidelor și a eficienței cu care acestea transmit virusul. Temperaturile cuprinse între 15 - 18ºC și intensitatea ridicată a luminii influențează pozitiv infecțiile virale.

Afid parazitat de un fung entomopatogen (posibil Beauveria bassiana)

Afid parazitat de un fung entomopatogen posibil Beauveria bassiana

Cele mai cunoscute plante gazdă ale virusului BYDV sunt: grâul, orzul, ovăzul, orezul, porumbul, pirul, secara, păiușul, obsiga etc. Până în prezent se cunosc peste o sută de specii de graminee ce pot fi gazde ideale. Gazdele de vară ale virusului sunt porumbul și afidele (14 specii și chiar mai multe). În corpul afidelor virusul poate persista 2 - 3 săptămâni. Foarte importante în transmiterea infecțiilor sunt: samulastra de grâu și orz și poaceele perene (Popescu, 2005).

Rhopalosiphum padi la grâu

Rhopalosiphum padi la grâu

 

Managementul integrat al patogenului BYDV

 

Acest virus nu poate fi gestionat corect de către fermieri dacă nu este identificat. Așadar, diagnosticul precis este foarte important deoarece, după cum aminteam și mai sus, simptomele pot fi confundate cu cele produse de alți factori biotici și abiotici. Specialiștii în protecția plantelor recomandă diagnosticul în laborator deoarece cel vizual nu este de încredere. Pentru diagnostic în laborator se recomandă testele ELISA.

Funcție de momentul realizării infecției, pagubele pot fi mai mari sau mai mici. Infecțiile de după răsărire sunt cele mai periculoase și pot duce chiar la pierderea culturii. Când infecțiile se produc în timpul înspicării, pagubele pot fi de 20% și chiar mai mari, funcție de starea de sănătate a plantelor (Popescu, 2005). De aceea, este important ca plantele să nu fie atacate și de alți patogeni. O plantă sănătoasă va rezista mai bine la infecția virală (depinde și de rezistența genetică a soiului).

Simptome produse de BYDV la o cultură de grâu din Caraș Severin - primăvara 2023. Plantele sunt îngălbenite și au stagnat în creștere. Cultura a fost întoarsă. În această fenofază exista riscul ca plantele să nu formeze spice. Probabil infecția s-a realizat în toamna 2022. Infecțiile din toamnă sunt cele mai păgubitoare

Simptome produse de BYDV la o cultură de grâu din Caraș Severin. Primăvara 2023. Plantele sunt îngălbenite și au stagnat în creștere. Cultura a fost întoarsă

Metode profilactice

În cazul BYDV, strategiile de control sunt cele care abordează măsurile profilactice sau de prevenție, cunoscut fiind că virusurile nu pot fi combătute chimic. În cadrul metodelor profilactice, pe prima poziție se află rezistența genetică a soiurilor.

Se recomandă ca, în anii favorabili să fie semănate soiuri tolerante sau rezistente. Ce înseamnă asta? La soiurile tolerante, virusul mai este încă capabil să se înmulțească, iar simptomele sunt mai puține. La cele rezistente, înmulțirea virusului este afectată, în consecință simptomele sunt reduse mult.

Îngălbenirea pornește de la vârful frunzei și înaintează spre bază. Nervurile rămân verzi, de aici și aspectul de dungatură și confuzia cu WSMV

nu inteleg

Alte metode profilactice sunt: distrugerea samulastrei de grâu și orz, însămânțarea în prima decadă a lunii octombrie și chiar mai târziu (Popescu et al., 2005).

Metode chimice

Virusurile nu pot fi combătute chimic. În schimb este foarte importantă combaterea chimică a afidelor vectori. După Popescu (2005), un tratament aplicat toamna când se înregistrează zbor masiv de afide ne poate scăpa de infecțiile virale. În zonele cu risc ridicat, monitorizarea afidelor trebuie făcută imediat după răsărire. Timp de 8 - 10 săptămâni de la răsărire plantele pot fi infectate dacă afidele sunt prezente în densitate mare (mai mult de 50% plante atacate și o densitate de 12 - 15 afide/tulpină).

grauvertical

În România sunt omologate pentru combaterea afidelor la cerealele păioase (Metopolophium dirhodum, Rhopalosiphum padi, Rhopalosiphum maidis și Macrosiphum avenae) următoarele substanțe: lambda - cihalotrin, cipermetrin, deltametrin, tau - fluvalinat (omologat pentru combaterea afidelor la orz), acetamiprid, gama - cihalotrin, esfenvalerat (după Aplicația PESTICIDE 2.23.10.1, 2023).

Metode biologice

Utilizarea prădătorilor și a paraziților afidelor ca agenți biologici de control a avut succes de multe ori, reducând populațiile de afide. De altfel, aceștia există în agroecosistemele agricole și trebuie protejați. Observăm adesea în coloniile de afide prădători (Coccinella sp., Chrysopa sp., Syrphus sp.) și parazitoizi (El - Heneidi, 1998; D'Arcy et Domier, 2005). Fungii entomopatogeni sunt și ei de interes. Testele efectuate în câmpurile experimentale arată că, populațiile de afide au fost reduse semnificativ comparativ cu martorul. Entomopatogenii de interes sunt: Beauveria bassiana, Metharhizium anisopliae, Verticillium lecanii etc (Sabbour, 2007; Marfadyen et al., 2009). Lansările de prădători și parazitoizi trebuie realizate atunci când populațiile sunt scăzute. Această regulă este valabilă și în cazul produselor pe bază de fungi entomopatogeni (Marfadyen et al., 2009).

cotuna lab

Compania Bayer în parteneriat cu USV „Regele Mihai I” din Timișoara aduce în atenția fermierilor informații importante despre patogenul Barley yellow dwarf virus, care a produs pagube importante culturilor de cereale păioase în anul 2023. În acest articol sunt informații utile despre cum să preveniți infecțiile virale și implicit pagubele în producție.

Bibliografie

Áy Z., Z. Kerenyi, A. Takacs, M. Papp, I. M. Petroczi, R. Gáborjányi, D. Silhavy, J. Pauk and Z. Kertész, 2008. Detection of Cereal Viruses in Wheat (Triticum aestivum L.) by Serological and Molecular Methods, Cereal Research Communications, vol. 36, No. 2, pp. 215 - 224.
Brault, V., Uzest, M., Monsion, B., Jacquot, E., Blanc, S., 2010. Aphids as transport devices for plant viruses. Comptes Rendus - Biol. 333, 524 – 538.
D’Arcy, C. J., 1995. Chapter I: Symptomatology and Host Range of Barley Yellow Dwarf. In: D’Arcy, C.J., Burnett, P.A. (Eds.), Barley Yellow Dwarf : 40 Years of Progress. APS Press, St Paul, Minnesota, USA, pp. 9–28.
D'Arcy, C. J. and L. L. Domier. 2005. Luteoviridae. In Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. eds. M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball and Claude M. Fauquet. Academic Press. New York., NY.
Domier, L., 2009. Barley yellow dwarf viruses. In: Mahy, B.W. J., Van Regenmortel, M. H. V. (Eds.), Desk Encyclopedia of Plant and Fungal Virology. pp. 100 – 107.
El-Heneidy, A. H. 1998. Review paper, Biological control of aphids in wheat fields. Egypt. J. Agric. Res., 76 (3): 1027 - 1035.
Gildow, F. E., 1999. Luteovirus Transmission and Mechansisms Regulating Vector Specificty. In: Smith, H.G., Barker, H. (Eds.), The Luteoviridae. CABI Publishing, pp. 88–111.
Gray, S. and F. E. Gildow. 2003. Luteovirus-aphid interactions. Ann. Rev. Phytopathology. 41:539 - 566.
Ingwell, L. L. and N. A. Bosque-Perez, N. A. 2015. New experimental hosts of Barley yellow dwarf virus among wild grasses, with implications for grassland habitats. Plant Pathology 64:1300 - 1307.
Kaddachi, I., Souiden, Y., Achouri, D., and Chéour, F. (2014). Barley yellow dwarf virus (BYDV): characteristics, hosts, vectors, disease symptoms and diagnosis. Int. J. Phytopathol. 3, 155–160.
Lapierre, H., 2004. Section IV: Virus diseases of the Poaceae: Virus Diseases of Barley (Hordeum vulgare L.). In: Lapierre, H., Signoret, P.-A. (Eds.), Viruses and Virus Diseases of Poaceae (Graminae). Institut National de la Recherche Agronomique, Paris, pp. 439 – 478.
Macfadyen S., Gibson R., Raso L., Sint D., Traugott M., Memmott J., 2009. Agriculture, Ecosystems and Environment 133 (2009) 14 – 18.
Miller, W. A., Rasochová, L., 1997. Barley yellow dwarf viruses. Annu. Rev. Phytopathol. 35, 167 – 190.
Miller, W. A., Liu, S., Beckett, R., 2002. Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol. Plant Pathol. 3, 177 – 183.
Popescu G., 2005. Tratat de patologia plantelor, vol. II, Agricultură, Editura Eurobit, Timișoara, 341 p.
Rochow, W. F., 1970a. Barley yellow dwarf virus. Descr. Plant Viruses 32.
Sabbour, M. M. and Shadia E-Abd-El-Aziz, 2007. Efficiency of Some Bioinsecticides Against Broad Bean Beetle, Bruchus rufimanus (Coleoptera: Bruchidae), Research Journal of Agriculture and Biological Sciences, 3(2): 67 - 72, 2007.
Shah, S. J. A., Bashir, M., Manzoor, N., 2012. A Review on Barley Yellow Dwarf Virus. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (Eds.), Crop Production for Agricultural Improvement. Springer Netherlands, Dordrecht, pp. 747 – 782.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Pagina 1 din 7

newsletter rf

Publicitate

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

BKT BANNER APRILIE

Andermatt Slides

T7 S 300x250 PX

Banner Agroimpact Viballa 300x250 px

GAL Danubius Ialomita Braila

GAL Napris

Revista