cercetare - REVISTA FERMIERULUI

Deși am mai scris despre acest dăunător, consider că trebuie să revin deoarece sunt probleme în sectorul pomicol. Cariul scoarței a fost identificat de curând la materialul de plantat destinat înființării unei livezi de măr în sistem ecologic. În acest moment, micuții gândăcei ies din scoarța pomilor, se împerecheză și depun ouă. Apar eșalonat din aprilie și pe tot parcursul verii. Cum este posibil ca pomii de plantat să vină infestați din pepinieră? Pomii în cauză sunt plantați acum, în luna iunie, conform tehnologiilor moderne (????). Din fericire nu toți au fost plantați. De asemenea, pe lângă Scolytus, sunt prezenți și patogeni care produc cancere. Despre ei într-un alt material.

Atrag atenția că o livadă ecologică trebuie să aibă un start foarte bun. Ce înseamnă asta? Pomii trebui să fie perfect sănătoși, fără boli și fără dăunători. Soiurile cultivate trebuie să fie rezistente la principalii patogeni ai speciei care se plantează. Se pare că în spațiul intracomunitar plantele sunt controlate doar pentru patogenii și dăunătorii de carantină. Restul patogenilor și dăunătorilor nu mai sunt luați în seamă. Tinerii pomi sunt infectați cu patogeni care produc cancere. Acești patogeni se instalează de regulă în livezile bătrâne. Cariul scoarței la fel, se intalează la pomii în declin, nu la cei tineri. Prezența cariului la pomii tineri este periculoasă. Pomii pot intra în declin rapid.

Mă întreb și eu, livezile ecologice sunt sortite pierii din start? Este posibil să fie înființate livezi ecologice în sistem intensiv și superintensiv, cunoscut fiind că speciile pomicole au o serie de dăunători și patogeni extrem de periculoși care cu ușurință trec de la un pom la altul și nu pot fi ținuți sub control prin metode biologice? Tehnologiile moderne și proiectele aprobate se pare că permit asta.

Ce știu eu despre aceste livezi? Știu că sunt sortite eșecului. Mai mult nu pot spune deoarece trebuie să păstrez confidențialitatea.

Când l-am deranjat a ieșit cu viteză. Foto realizată la 10 iunie 2024

Când l am deranjat a ieșit cu viteză. Foto la 10 iunie 2024

Recomandarea mea este să verificați cu atenție materialul săditor înainte de a-l pune în pământ. Pomii trebuie să aibă scoarța fără răni sau umflături, fără modificări de culoare, fără dăunători de scoarță. Rădăcinile trebuie să fie sănătoase, fără brunificări, fără tumori și micelii.

Vă atrag atenția că, în această perioadă adulții de Scolytus ies masiv din scoarța pomilor. Este momentul să verificați livezile (indiferent de vârstă). Dacă observați orificii pe scoarță și gândăcei mici, negri, treceți la efectuarea unui tratament.

În cele ce urmează, readuc în atenție informații despre acest dăunător periculos al pomilor fructiferi.

Scolytus rugulosus – Cariul scoarței este un dăunător polifag ce poate fi întâlnit la măr, păr, prun, cais, cireș, păducel, cătină, nuc, mur, alun, carpen, fag, ulm etc. Este răspândit în Europa, Africa de Nord, Asia Mică, Rusia, Iran, America de Nord și de Sud etc.

 

Recunoașterea și biologia dăunătorului

 

Adultul are lungimea corpului cuprinsă între 1,4 - 3,2 mm. Corpul insectei este alungit și are culoare neagră mat. Culoarea elitrelor este brun - roșcată sau castanie. Corpul insectei este convex și spre vârf descrește. Antenele și picioarele au culoare brună. Larvele au culoare albă și sunt apode. Capul este de culoare brună, iar lungimea corpului variază între 2 - 3 mm [Roșca et al., 2011].

Dăunătorul poate avea o generație în zonele nordice și două în zonele mai calde. În România are două generații pe an. Iernează în stadiul de larvă matură în galeriile săpate în lemn. Studiile asupra biologiei acestui dăunător arată că stadiile de prepupă și pupă se formează la începutul primăverii (martie - aprilie). Primii adulți încep să apară la începutul lunii aprilie - mai. Ei pătrund sub scoarță mai ales prin zona mugurilor [Tezcan & Civelek, 1996].

Gândăcei de Scolytus rugulosus la puieți de măr. Foto din data de 10 iunie 2024

Gândăcei de Scolytus rugulosus la puieți de măr în data de 10 iunie 2024

Femela sapă galerii mamă (maternale) longitudinale sub scoarță, de 1 - 2 cm, mai rar 3 cm și mici cavități în părțile laterale ale galeriei unde își depune ouăle. O femelă depune între 10 - 100 ouă. Ramurile lungi de 25 cm pot avea uneori până la 15 galerii mamă. Galeriile produse de larve sunt lungi, sinuoase și uneori se intersectează sau se suprapun. La capătul galeriilor, larvele sapă o celulă adâncită unde se vor retrage pentru împupare. Noii adulți vor ieși la suprafața scoarței prin mici orificii [Alford, 2016].

În livadă, adulții pot fi observați din mai și până în noiembrie, cu un maxim în lunile mai - iunie. Unii cercetători au raportat o apariție intensă a adulților în lunile iulie și septembrie [Özgen et al., 2012]. Aceste aspecte legate de biologia dăunătorului sunt mult influențate de condițiile climatice.

 

Daune produse

 

Dăunătorul atacă mai ales livezile abandonate și pomii bolnavi. Pomii devitalizați, bolnavi sunt predispuși atacului unor dăunători secundari așa cum este și Scolytus rugulosus. În 2 - 3 ani copacii infestați puternic se pot usca. În general sunt mai atacate livezile de sâmburoase.

În ultimul timp, Scolytus rugulosus își face simțită prezența și în livezile din România, mai ales la cais, cireș, măr. De obicei, dăunătorul este prezent în livezile mai vechi sau în care tratamentele nu se fac corect sau la momentele optime de combatere. Frunzele pomilor atacați se îngălbenesc, iar fructele rămân mici, pipernicite.

Larvă de Scolytus fotografiată în octombrie 2020

Larvă de Scolytus fotografiată în octombrie 2020

Acest gândac de scoarță (cariu) atacă scoarța interioară, minând zona floem - cambială a ramurilor, lăstarilor și trunchiurilor copacilor și arbuștilor fructiferi. În fisurile din scoarță se poate observa rumegușul rezultat în urma săpării galeriilor. Uneori rumegușul poate fi observat și pe pământ sau în pânzele de păianjen. Pe lângă rumeguș, prezența dăunătorului poate fi semnalată și după micile orificii din scoarță. Dacă detașăm scoarța cu orificii, vom observa scoarța interioară moartă, degradată, gândăcei noi, larve, galeriile săpate de larve și mult rumeguș. În lemn, după îndepărtarea rumegușului se pot vedea și celulele adâncite unde larvele se pregătesc de împupare. În caz de atacuri puternice, dăunătorul poate pătrunde și în fructe, în zona sâmburelui, unde sapă galerii [Özgen et al., 2012].

Scolytus rugulosus atacă frecvent pomii bolnavi, răniți, stresați din cauza secetei sau alte cauze. Acest dăunător poate contribui la declinul și moartea pomilor fructiferi.

 

Managementul integrat

 

În cadrul sistemului de combatere integrată trebuie să ținem cont de cele trei tipuri de măsuri: profilactice, chimice și biologice. Din păcate, cariul scoarței este destul de greu de controlat odată ce infestarea s-a produs.

Măsuri profilactice

Bhagwandin (1992) susține că igiena culturală este singura care poate da bune rezultate în managementul acestui dăunător. Se recomandă tăierea ramurilor și lăstarilor care prezintă atac și scoaterea lor rapid din plantație. Tot materialul lemnos scos din plantație trebuie distrus prin ardere. În cazurile în care trunchiul principal este infestat masiv, copacul trebuie eliminat din plantație și ars. În nici un caz ramurile rezultate în urma tăierilor nu trebuie lăsate în apropierea pomilor sănătoși.

Pentru a preîntâmpina atacul se recomandă menținerea stării de sănătate a pomilor din livadă, eliminarea factorilor de stres, executarea tratamentelor împotriva patogenilor și dăunătorilor la avertizare (momentele optime).

Prevenirea este cea mai eficientă metodă de control a gândacilor de scoarță. Așadar, evitați rănirea rădăcinilor și trunchiurilor în timpul executării lucrărilor de îngrijire în livadă. Irigați pomii în perioadele secetoase din vară (măcar de două ori pe lună).

Este foarte important momentul în care efectuăm tăierile la pomi. Trebuie evitată crearea rănilor proaspete în timpul zborului adulților. Se recomandă să nu se execute tăieri de eliminare a ramurilor infestate în perioada martie - septembrie.

După cum am menționat mai sus, materialul lemnos (ramuri, pomi) infestat trebuie scos rapid din livadă și distrus. Distrugerea se poate face prin ardere sau prin solarizare. Pentru protejarea mediului, este indicată solarizarea. Peste grămada de lemne se pune o folie de plastic mai groasă și se etanșează bine pentru ca gândacii să nu poată ieși. Este bine ca solarizarea să se facă într-o zonă însorită timp de câteva luni. Folia de plastic trebuie să fie transparentă, rezistentă la razele UV și de foarte bună calitate [Sanborn, 1996].

gandaci

Măsuri chimice. Eficiente sau nu?

Deoarece gândăceii de Scolytus rugulosus sunt protejați de scoarță este destul de greu să îi combatem cu ajutorul insecticidelor. Tratamentele chimice pot avea succes doar atunci când livada este foarte bine monitorizată, pentru ca gândacii să poată fi omorâți din timp. Soluția trebuie pulverizată pe scoarță în așa fel încât gândacii să fie uciși înainte de a pătrunde dedesubtul ei. Odată intrați sub scoarță, cu greu mai pot fi omorâți.

De asemenea, tratamentele aplicate pomilor deja infestați nu sunt eficiente, deși ele mai pot reduce din populații dacă se fac în timpul zborului adulților. Apariția eșalonată a gândacilor pe toată perioada verii îngreunează foarte mult combaterea.

Studiile arată că nici insecticidele sistemice aplicate prin injectare sub scoarță sau la solul de sub pomi nu sunt eficiente în combatere. De altfel, multe insecticide sistemice, în prezent nu sunt recomandate pentru combaterea gândacilor de scoarță [Donaldson & Seybold, 1998].

Există studii care arată că și-au dovedit eficiența insecticide pe bază de acetamiprid, esfenvalerat, spinosad. În general, orice insecticid utilizat în combaterea dăunătorilor din pomicultură poate fi utilizat dacă este omologat și dacă este aplicat în timpul zborului maxim al adulților. Cele mai „eficiente” sunt insecticidele cu o perioadă mai lungă de persistență.

În Aplicația PESTICIDE din 2024 nu am găsit vreun insecticid omologat pentru acest dăunător, deși el există și produce daune.

Măsuri biologice

Gândacul de scoarță are dăunători naturali atât prădători, cât și paraziți. În reglarea populațiilor de gandaci sunt mai eficienți prădătorii decât paraziții. Totuși, lansările de prădători sau paraziți în livezile cu infestări majore nu au fost eficiente în combatere. Mortalitatea prin parazitism a acestei specii poate ajunge la aproximativ 16%.

Pentru detectarea timpurie a gândacilor pot fi utilizate capcane cu feromoni.

 

Bibliografie
Alford V. David, 2016. Pests of fruit crops: A colour handbook, second edition, 462 p..
Bhagwandin H. O., 1992. The shothole borer: An ambrosia beetle of conara for chestnut orcharding in the Pacific Nortwest, p. 168 - 177. In 93rd Annual Report of the Northern Nat. Growers Assn., Western Chestnut Growers Assn.
Donaldson, S. G. and S. J. Seybold. 1998. Thinning and Sanitation: Tools for the Management of Bark Beetles in the Lake Tahoe Basin. Reno: University of Nevada Cooperative Extension Fact Sheet FS-98-42 (PDF).
Özgen, İ., Sarikaya, O. & Çiçek, H., 2012. Damage of Scolytus rugulosus (Müller, 1818) (Coleoptera: Curculionidae, Scolytinae) in the apricot fruits. Munis Entomology & Zoology, 7 (2): 1185-1187.
Roșca I. et al., 2011. Tratat de Entomologie generală și specială, Editura Alpha MDN Buzău, p. 656.
Sanborn, S. R., 1996. Controlling Bark Beetles in Wood Residue and Firewood. Sacramento: California Department of Forestry and Fire Protection, Tree Notes 3.
Tezcan, S. & Civelek H. S., 1996. Investigations on the biology and damage of Scolytus rugulosus (Müller, 1818) (Coleoptera: Scolytidae) in cherry orchards of Kemalpaşa (İzmir) district of Turkey. III Turkish national congrees of Entomology, 24 - 28 september, 1996, Ankara, 135-141.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Horticultura

Pe 21 și 22 iunie 2024, la Viena, are loc cea de-a patra Conferință Globală pentru Agricultură. Evenimentul oferă oportunitatea descoperirii de tehnologii inovatoare, cât și de a stabili relații de afaceri cu jucători cheie din industrie, cercetare și mediul academic.

Între subiectele celei de a patra ediții a Conferinței Globale pentru Agricultură se află: conservarea la nivel de ecosistem, noile tehnici genomice, biodiversitatea agricolă, managementul fermelor, crizele agrare și de mediu, precum și inteligența artificială în agricultură.

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Eveniment

Centrul de Cercetări pentru Biodiversitate din campusul Universității de Științe Agricole și Medicină Veterinară (USAMV) Cluj-Napoca găzduiește, pe 7 iunie 2024, a XI-a ediție a Festivalului Alimentului, un eveniment ce aduce în prim-plan talentele și abilitățile studenților de la Facultatea de Ştiința şi Tehnologia Alimentelor (FSTA). Creațiile din festival sunt rezultatul aplicării unor tehnologii avansate în procesarea alimentelor. Astfel, studenții analizează noi metode și ingrediente pentru producerea de alimente de calitate.

Centrul de Cercetări pentru Biodiversitate va fi scena unui veritabil experiment gustativ, în cadrul căruia peste 60 de produse, rezultat al muncii și creativității studenților, vor fi prezentate publicului și specialiștilor din industria de profil.

7

9

Rainbow Bread, Lucuma tartelettes, Matcha cookies, Prune murate, Lemon bliss bar, Dragon jelly, Purple crackers, Brahmi - Mousse de ciocolată vegan, Bagels cu adaos de urzici, Băutură din zer cu fructul pasiunii, Unt cu cimbru și chili, AvoGo - marmeladă din avocado și mango cu adaos de tescovină de mere, Hidromel cu cătină, Rose Red - Bere roșie îmbogățita cu biocompusi din măceșe, Golden Brew – specialitate de bere cu ovăz și miere, sunt unele dintre creațiile inovatoare ale studenților clujeni, fiind rezultatul aplicării unor tehnologii avansate în procesarea alimentelor și au scopul de a investiga noi metode și ingrediente pentru producerea alimentelor de calitate.

10

6

Produsele înscrise la Festivalul Alimentului vor fi supuse unei jurizări riguroase de către reprezentanții a zece companii de prestigiu din industria alimentară, interesate de potențialul inovator al acestor creații.

8

„Evenimentul este organizat sub patronajul tradițional al universității, prin facultatea noastră, în colaborare cu Asociația Specialiștilor din Industria Alimentară din România și partenerii din industria alimentară - Carmangeria Moldovan, Oscartielle și Marlex, cărora le mulțumim pentru sprijinul necondiționat în desfăşurarea festivalului. Vizitatorii sunt încurajați să se bucure de experiența gustativă oferită de aceste produse, care nu numai că sunt delicioase, dar sunt și rezultatul utilizării unor tehnologii inovatoare, prin care promovăm astfel un stil de viață sănătos și sustenabil”, a declarat prof. dr. Elena Mudura, decan al FSTA.

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Eveniment

Grupul Syngenta transmite că va oferi drepturi pentru anumite tehnologii de editare a genomului și de ameliorare pentru cercetarea academică la nivel global, ca parte a angajamentului său de a încuraja inovația și de a susține sustenabilitatea în agricultură. Aceste drepturi sunt accesibile prin intermediul platformei sale de colaborare în inovare, Shoots by Syngenta.

Anumite drepturi de Proprietate Intelectuală sunt legate de CRISPR-Cas12a optimizat, precum și de instrumente de ameliorare realizate prin editare genetică. Prin editarea genetică CRISPR este posibilă obținerea unei plante cu caracteristici îmbunătățite, care nu include material genetic de la o altă specie - mai rapid și mai eficient decât este posibil în mod natural sau prin metode tradiționale de ameliorare. „Puterea tehnologiei CRISPR are un potențial incredibil în a facilita inovația culturilor pentru a aduce valoare fermierilor. Creșterea utilizării tehnologiei CRISPR în agricultură poate transforma modul în care abordăm ameliorarea plantelor, accelerând descoperirea și lansarea inovațiilor care să ofere fermierilor culturi mai productive și mai rezistente. Invităm universitățile și instituțiile academice din întreaga lume să ne ajute să stimulăm inovația pentru a îmbunătăți sustenabilitatea agriculturii”, arată Gusui Wu, director global cercetare semințe la Syngenta.

În acest val al inovației tehnologice, cercetătorii de la Syngenta au inovat continuu pentru a îmbunătăți tehnologiile de editare a genomului CRISPR-Cas. Oamenii de știință de la Syngenta au modificat CRISPR-Cas12a pentru a-i crește atât eficiența, cât și utilitatea, optimizându-l semnificativ ca instrument pentru îmbunătățirea culturilor.

„Syngenta a fost dintotdeauna deschisă la partajarea tehnologiei cu entități publice și private, facilitând accesul simplu, rapid și ușor la tehnologiile sale proprietare pentru utilizarea în cercetarea academică și cu scop non-profit. Un exemplu îl constituie platforma de licențiere a legumelor Syngenta, care permite companiilor de ameliorare și institutelor academice să acceseze și să amelioreze folosind germoplasmă Syngenta”, transmite Syngenta România.

Platforma globală de colaborare în inovare Shoots by Syngenta a fost creată în 2023 cu scopul de a crea parteneriate menite să găsească soluții pentru unele dintre cele mai complexe provocări din domeniul producției alimentare și agriculturii. Platforma aduce împreună partenerii ecosistemului de inovare - format din academicieni, institute de cercetare și alte entități, alături de rețeaua globală de cercetare-dezvoltare a Syngenta, care este formată din peste 6.000 de oameni de știință. Scopul este de a dezvolta soluții menite să atenueze schimbările climatice, să îmbunătățească biodiversitatea și să servească mai bine fermierii mici și mari. Platforma a fost creată și se bazează pe valorile deschiderii și transparenței.

„La Syngenta, credem cu adevărat că orice colaborare accelerează inovația. Această nouă inițiativă are un potențial imens, nu doar de a rezulta în inovații tehnologice interesante, ci și de a conduce către soluții importante pentru culturi, care vor sprijini fermierii din întreaga lume”, precizează Stuart Harrison, directorul responsabil de parteneriate globale pe cercetare-dezvoltare a semințelor.

Adrian Percy, director executiv al Inițiativei Științelor Plantelor din Carolina de Nord, afirmă că: „Prin accesarea acestor tehnologii inovatoare de la Syngenta, Inițiativa Științelor Plantelor din Carolina de Nord și Universitatea de Stat din Carolina de Nord pot accelera și pune în valoare capacitățile lor în domeniul editării genomului. Suntem entuziasmați de aplicarea acestor tehnologii în programele noastre de cercetare, deoarece cu siguranță acestea vor permite îmbunătățirea caracteristicilor mai multor culturi, în beneficiul fermierilor”.

Astfel, a fost stabilit un proces simplu și eficient pentru licențierea tehnologiilor. Informații suplimentare despre tehnologiile disponibile pot fi accesate prin intermediul catalogului online de pe site-ul Shoots by Syngenta: https://shootsbysyngenta.com/outlicensing.

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Știri

Pentru început, să identificăm părerile părților combatante. Pe data de 15 aprilie, anul curent, a avut loc un protest spontan al unor fermieri din județele Prahova, Iași, Vrancea și Vaslui care reclamau efectul negativ al lansărilor de rachete antigrindină asupra nivelului de precipitații din arealele de cultură respectivă și implicit accentuarea efectului de secetă.

Astfel, în marja acestui protest spontan, fermierul prahovean Adrian Mocanu, membru în comitetului director al FAPPR, arăta faptul că ,,ne-am adunat aici întrucât, începând cu 15 aprilie, începe așa-zisul sezon al rachetelor antigrindină, iar noi, fermierii din Prahova suntem extrem de nemulțumiți de activitatea acestui sistem și cu ocazia asta vrem să tragem un semnal de alarmă să-l oprească definitiv”. Mai mult, fermierul prahovean susținea în aceeași intervenție avută la AGRO TV în ziua protestului, că printre multe alte avize negative interne și internaționale, ar există și unul de la Organizația Mondială a Meteorologiei, în care se spune clar că nu sunt recomandate intervențiile în atmosferă”.

În aceeași zi, și în continuarea unor poziții asumate și anterior, una dintre organizațiile profesionale ale fermierilor, mai concret FAPPR și-a însușit/asumat revendicările, poate datorită faptului că fermieri ai asociațiilor membre ale sale au fost cele care au pus umărul la organizarea acestor proteste spontane, așa cum reiese din comunicatul preluat de presă, unde se arată că ,,Forumul APPR susține inițiativa membrilor săi de a-și face vocea auzită. Protestele de astăzi sunt un semnal de alarmă pe care fermierii îl transmit autorităților care nu mai pot rămâne pasive la multitudinea de probleme ale sectorului: situația este critică, iar decidenții sunt somați să vină cu soluții concrete”.

Așa cum spuneam, poziția adoptată de FAPPR și membrii săi este o continuare a unor altor luări de poziție, cum a fost și cea din 6 martie 2024, când într-un comunicat ultimativ la adresa MADR se arătau următoarele cerințe: ,,… solicită măsuri urgente din partea Ministerului Agriculturii și Dezvoltării Rurale (MADR) cu privire la sistemul antigrindină, pentru a întrerupe consecințele sale asupra agriculturii românești. Sistemul antigrindină, în ciuda scopului său inițial de a proteja culturile agricole, a generat o serie de efecte dezastruoase asupra activităților agricole din zonele de influență, aspect confirmat și documentat de către membrii noștri, fermieri din județele Vrancea, Prahova, Iași”.

Totuși, partea din comunicatul FAPPR unde se arăta că aspectele negative sunt confirmate și documentate de către fermieri (aș fi fost curios să văd respectivele argumente și confirmări), ceea ce ar fi însemnat existența unui dosar cu argumente certe, științifice, a fost îndulcită diplomatic de către vicepreședintele FAPPR, domnul Teofil Dascălu, care într-o intervenție la G4Media, spunea că: ,,În ultimii 4-5 ani de zile, în județele unde sunt astfel de sisteme se poate observa accentuarea secetei pedologice. Sunt cantități multianuale din ce în ce mai mici ca și cantitate și, din această cauză, marea majoritate a fermierilor de cultură mare a început să speculeze că acest sistem ar cauza, pe lângă faptul că protejează culturile de grindină, și o scădere a precipitațiilor”.

În continuarea comunicatului, FAPPR formula și o serie de cereri, cum ar fi suspendarea imediată a sistemului antigrindină până când eficiența și impactul său asupra agriculturii vor fi prezentate clar într-un studiu detaliat și obiectiv” și în completare dădea și o mână de ajutor MADR prin a arăta că deja a identificat o entitate imparțială și de specialitate care ar putea să realizeze o astfel de cercetare, menită să evalueze eficient si utilitatea acestui sistem, pe care o putem recomanda oricând autorităților competente”.

Tot cu ocazia protestului spontan al unor fermieri din județele menționate a apărut și o știre la postul DIGI24, ca urmare a unor discuții cu nemulțumiții din cadrul manifestației, unde se arăta: ei spun că, în prezent, astfel de sisteme antigrindină sunt operaționale doar în câteva țări din Europa de Est (România, Bulgaria, Republica Moldova, Ucraina), în vreme ce statele central și vest-europene au renunțat de decenii la aceste sisteme, care, cel puțin acolo, s-au dovedit inutile și păguboase. În plus, fermierii suspectează că iodura de argint nu este chiar atât de inofensivă, se acumulează în sol și are remanență în apele de suprafață și în pânza freatică”.

Concluzionând până la acest moment, putem identifica câteva păreri (mai academic le putem spune ipoteze) ale fermierilor protestatari și ale conducerii FAPPR, care sunt următoarele:

  1. Sistemele antigrindină sunt operaționale ,,doar în câteva țări din Europa de Est”, în timp ce statele central și vest-europene au renunțat de decenii.”;

  2. Fermierii protestatari suspectează că iodura de argint ,,nu este chiar atât de inofensivă”;

  3. Sistemul antigrindină accentuează seceta prin reducerea cantităților de precipitații în arealele respective;

  4. Sistemul anti grindină ,,generează efecte dezastruoase asupra activităților agricole din zonele de influență.”;

  5. Organizația Mondială a Meteorologiei ar afirma că nu sunt recomandate intervențiile în atmosferă.

Privitor la părerile autorităților de la MADR și de la Sistemul național antigrindină și de creștere a precipitațiilor (SNACP) sunt tocmai opuse celor ale fermierilor și consideră că toate aceste păreri (ipoteze) nu au la bază argumente științifice care să poată susține vreuna din cererile formulate.

                                                        

Ce sunt norii și cum se formează

 

Norii se formează și devin o masă vizibilă când vaporii invizibili de apă din aer condensează în picături de apă vizibile sau în cristale de gheață, care au de obicei o dimensiune de 0,01 mm în diametru.

Majoritatea picăturilor se formează când vaporii de apă se condensează în jurul unui nucleu de condensare, o particulă minusculă de fum, praf, cenușă sau sare. În condiții de suprasaturare, picăturile de apă se pot comporta ca nuclee de condensare.

Apa dintr-un nor obișnuit poate cântări până la câteva milioane de tone. În orice caz, volumul unui nor este corespunzător de mare, iar densitatea vaporilor este de fapt destul de scăzută încât curenții de aer din interiorul norului și de sub acesta să fie capabili să susțină picăturile suspendate în aer. Mai mult, condițiile din interiorul unui nor nu sunt statice, ci suferă în permanență modificări, fiind un sistem dinamic în care picăturile de apă se formează și se evaporă în mod constant.

Acestea sunt înconjurate de un număr imens de alte picături asemănătoare și produc diferite culori ale norilor, mergând de la albul pur când proporția cristalelor de gheață este mare până la nuanțe foarte închise de gri pentru norii care conțin majoritar picături de apă.

O altă cauză pentru diferitele nuanțe între alb și negru avute de nori este dată de grosimea acestora, în condițiile în care aceștia reflectă lumina la fel indiferent de lungimile de undă avută de aceasta. Astfel cu cât norul este mai gros și mai dens, cu atât culoarea este mai închisă din cauza absorbției luminii produsă în interiorul norului. Formarea norilor în atmosferă se poate produce în trei modalități distincte.

Picăturile de apă care sunt destul de mari pentru a cădea pe pământ sub formă de ploaie sunt produse în două modalități, primul prin așa numitul proces Bergeron, care are la bază teoria că picăturile de apă suprarăcite, împreună cu cristalele de gheață dintr-un nor, interacționează și duc la creșterea rapidă a cristalelor de gheață, care precipită din nor și se topesc în timp ce cad. Acest proces are loc de obicei în nori ai căror vârfuri au temperaturi de mai puțin de minus 15°C. Dacă vârfurile de temperatură sunt mai scăzute, iar nucleele de condensare sunt puține, atunci cele existente cresc în dimensiune și poate apărea grindina, care fiind mai mare nu are timp să se topească până ajunge la nivelul solului. În funcție de cât de mare este dimensiunea acestora la formarea în nor cu atât mai mare va fi grindina care ajunge la sol.

Grindina este o precipitație de gheață, de obicei mai mare de 5 mm în diametru, care se formează în furtuni care conțin particule de grindină formate atunci când temperaturile sunt sub nivelul de îngheț și există apă lichidă super-rece din abundență care coexistă cu particulele de gheață, iar apoi aceste particule de gheață cresc în dimensiune prin ciocniri cu picături super-reci (V. Rana, 2022).

Al doilea proces important este acela de coliziune și captare, care are loc în nori cu vârfuri mai calde, în care coliziunea picăturilor de apă care se ridică și coboară (o mișcare de oscilare pe altitudine), care poate avea la bază, printre altele, o mișcare convectivă (datorită temperaturii) sau orografică (datorită formațiunilor de relief), produce picături din ce în ce mai mari, care sunt în final destul de grele pentru a cădea pe pământ sub formă de ploaie. În timp ce o picătură cade printre alte picături mai mici care o înconjoară, ea produce o „trezire” care atrage câteva dintre picăturile cele mici în coliziuni, ajutând astfel la răspândirea procesului.

                                        

De ce vor oamenii să ,,însămânțeze norii”?

 

Însămânțarea norilor a fost dezvoltată în anii 1940 și a devenit populară în SUA în anii 1950 și 1960, deoarece fermierii, companiile hidroenergetice și stațiunile de schi au beneficiat astfel de precipitații suplimentare, fapt care le aducea tuturor beneficii.

Mai concret, așa cum se arată în mai multe studii (Dessens și colab. 2016; Katri și colab. 2021), modificarea climatului sau însămânțarea norilor în scopul creșterii precipitațiilor, dar și de a elimina căderile de grindină, au început cu experimentele lui Scaefer (1946), apoi Vonnegut (1947) și Langmuir și Schaefer (1948), care au descoperit mijloacele de creștere a concentrației de cristale de gheață în nori prin utilizarea particulelor de gheață carbonică sau iodură de argint.

Merită de altfel reținută explicația domnului general Căunei, fostul șef al Sistemului Național Antigrindină și Creștere a Precipitațiilor (SNACP), care a explicat principiul de lucru al sistemului antigrindină: ,,noi intervenim într-o parte a norului, în cea în care se dezvoltă niște celule convective, adică acolo unde se formează gheața. Dacă nu intervenim, se formează gheața care cade și produce pagubă. Dacă intervenim în celula respectivă, iodura de argint din rachete produce centre de condensare, cu alte cuvinte face o chiciură mai măruntă și se schimbă structura și atunci celula devine mai grea și nu se duce în sus să se formeze gheața, ci cade pe pământ sub formă de precipitații. Din grindină facem apă. Deci nu am cum sa fiu acuzat că produc secetă”.

Dar, de ce am vrea să însămânțăm norii? Această tehnică de însămânțare a norilor a pornit de la dorința de a oferi o sursă durabilă de apă dulce prin creșterea precipitațiilor de la nori specifici în condiții specifice. Concomitent cu dorința de a avea mai multă apă s-a pus și problema realizării unui concept de intervenție pentru reducerea riscului de formare a grindinei, tot prin folosirea însămânțării norilor, iar cu timpul unele țări l-au poziționat ca obiectiv principal (cum este și cazul României), iar în secundar este cel de creștere al precipitaților.

Revenind la cronologia evoluției tehnicilor, primele proiecte comerciale și științifice pentru implementarea noilor descoperiri au fost utilizarea generatoarelor de fum cu iodură de argint, operate din aeronave sau de la sol (pe baza arderii în generatoare), pentru a crește concentrația de nuclee de formare (IFN) în norii convectivi sau în stratul limită care îi alimenta (Dessens, 1953, Krick, 1954, Dessens și colab. 2016).

Utilizarea rachetelor pentru a transporta substanța activă în interiorul norului de grindină a fost dezvoltată un deceniu mai târziu de oamenii de știință ruși (Sulakvelidze și colab., 1974, citați de Dessens și colab. 2016).

Tehnica și cercetările aferente au căzut în dizgrație (în SUA) temporar în timpul și o perioadă după războiului din Vietnam (The Japan Times 13 aprilie 2024), când SUA a fost acuzată în presa vremurilor că ar folosi această tehnologie în scop militar. Adică, mai concret, s-a încercat acreditarea (nu a fost recunoscută niciodată în mod explicit) că ar exista un program secret prin care s-ar dori crearea unor precipitații foarte abundente pentru a încetini sau opri rutele de aprovizionare ale soldaților vietnamezi, fapt ce a dus la suprimarea finanțării guvernamentale pentru cercetare o perioadă de timp. De menționat că, poate de multe ori teoriile conspirației, nedemonstrate până în prezent, dar bazate pe astfel de situații, alimentează fel de fel de opinii și concepții pe care le întâlnim și astăzi.

Oricum, toată această dezvăluire de presă a avut ca și consecință semnarea în 1977, de către SUA, Rusia, India și unele țări europene (inclusiv România), a Convenției de modificare a mediului, care interzice tehnicile de modificare a vremii în scopuri militare.

 

Cum se însămânțează norii

 

În funcție de modalitatea de însămânțare, prima situație este lansarea de la nivelul solului, iar aici avem în vedere două situații, prima prin folosirea generatoarelor în care se arde o emulsie de acetonă și iodură de argint (AgI) și aerosolii generați, folosindu-se de turbulențele naturale ale aerului se ridică la nivelul norilor, sau a doua formă este atunci când avem sistemele de rachete care sunt în general tot pe bază de iodură de argint, doar că transportul acesteia la nivelul norului se face cu racheta, ceea ce face însămânțarea mult mai precisă, crescând cu mult eficacitatea. Conform cercetărilor pe plan mondial, se estimează că eficiența științifică a celor două activități este de minimum 75% prin metoda rachetelor și, respectiv, de maximum 60% prin metoda aviației, conform oficialilor IAA SA.

O a doua modalitate de însămânțare a norilor este cea aeropurtată care are în vedere folosirea avioanelor sau mai nou a dronelor de mare altitudine și care pe aripi au generatoare de agenți de însămânțare, cum ar fi sărurile de sodiu, potasiu sau iodură de argint.

O altă clasificare este legată de tipul de agent de însămânțare, cum ar fi particulele de iodură de argint de dimensiuni microscopice (AgI), dar și sărurile de sodiu sau potasiu, iar în unele cazuri există studii și privind undele sonore.

Ar mai fi de menționat că însămânțarea poate fi higroscopică, adică sub izoterma de 00C (în zona temperaturilor pozitive), sau glaciogenă, care este peste izotermă (zona temperaturilor negative). Pentru a înțelege mai bine toate aceste concepte, folosim două ilustrații ale Organizației Mondiale a Meteorologiei privitoare la cele două sisteme.

  • Însămânțarea higroscopică - (cu săruri de sodiu sau potasiu) a unui nor convectiv. Roșu indică suprafața însămânțată și materialul de însămânțare care urmează să fie adăugat cu avion, generator sau rachetă.

  • Rezultatul scontat al însămânțării (roșu), atunci când pe nuclee de condensare adăugate apar picături care cresc prin condensare și apoi declanșează coliziunea și coalescența pentru a forma ploaie.

foto1

(sursa: Organizația Mondială de Meteorologie)
  • Însămânțarea glaciogenă (cu iodură de argint) a unui nor convectiv. Roșu indică suprafața însămânțată și materialul de însămânțare care urmează să fie adăugate cu avion, generator sau rachetă.

  • Rezultatul scontat al însămânțării (roșu), când nucleele de condensare adăugate formează cristale care cresc și apoi se topesc sub izoterma de 0°C.

foto2

(sursa: Organizația Mondială de Meteorologie)

 

Despre păreri (ipoteze)

 

Ipoteza I - Sistemele antigrindină sunt operaționale ,,doar în câteva țări din Europa de Est”, în timp ce statele central și vest-europene au renunțat de decenii.

Să purcedem organizat și să începem prin a analiza situația din zona balcanică, așa cum apare într-o hartă publicată de Agerpres de la SNACP și unde se observă foarte clar că toate țările din jurul nostru aplică aceste tehnici, diferind doar modalitățile.

Imagine1

Astfel, în Republica Moldova se protejează aproape 1,6 milioane ha (cca 80% din suprafața totală), apoi în Serbia cca 1,1 milioane ha, Bulgaria cu cca 1,3 milioane ha și România cca 2,3 milioane ha, în toate cele patru țări prin sisteme de rachete. Ungaria protejează cca 1,45 milioane ha prin generatoare și Grecia protejează cca 1,2 milioane ha prin metoda aviației.

Dacă ne referim acum la modul global de folosință a acestor tehnologii este de reținut afirmația făcută de reprezentanții Intervenții Active în Atmosferă  (IAA) SA care susțin că ,,cele două tipuri de intervenții active în atmosferă sunt utilizate de peste 50 de ani în țări precum SUA, China, Germania, Franța, Bulgaria, Republica Moldova, Croația, Argentina și multe altele. Organizația Meteorologică Mondială promovează activitățile de intervenții active în atmosferă și le monitorizează prin autoritățile meteorologice naționale”. Dar aceștia sunt români și dacă nu spun adevărul?

De aceea am căutat și la alții. Aceleași situații le menționează și Caussape și colab. (2021), care arată că de la mijlocul secolului al XX-lea încoace, în întreaga lume au fost proiectate mai multe sisteme/rețele de eliminare a grindinii: în Franța (Dessens, 1986a; Dessens, 1998), SUA (Henderson, 2006), China (Wang et al., 2006) sau Israel (Levin, 2011).

Într-un articol recent, presa japoneză (The Japan Times 18 aprilie 2024) susține că tehnica este folosit în statele din vestul SUA și în țările europene, inclusiv Franța și Spania, iar China îl folosește în mod regulat în scopuri de irigare și de asemenea, la folosit și pentru a reglementa precipitațiile în Beijing, inclusiv în timpul Jocurilor Olimpice din 2008.

Într-un alt studiu, Kim și colab. (2023) arată că tunurile antigrindină care folosesc acetilenă sau propan, bazate pe unde sonore sunt folosite activ în zonele agricole din Italia, Franța, Austria, Țările de Jos, SUA, Australia, Noua Zeelandă și China. Rachetele anti-grindină sunt utilizate pe scară largă în Rusia, Italia, China, Kenya și Balcani (România, Bulgaria, Serbia, Republica Moldova), iar avioanele sunt folosite de Canada, SUA, Argentina, China și Germania, Grecia.

Mai multe lucrări arată că, la acest moment, peste 50 de țări din lume utilizează aceste tehnici pentru combaterea grindinei, pentru creșterea precipitaților sau mixt.

Poate că fermierul autor al afirmațiilor analizate ca și ipoteză a avut în vedere altceva, în sensul că fiecare țară poate folosi unul sau mai multe sisteme, iar în funcție de condițiile concrete bazate pe fel de fel de analize să aleagă unul sau mai multe.

De exemplu, în Franța, legislația permite folosirea acestor tehnici, dar investițiile sunt private, iar anumite zone cum sunt podgoriile din Burgundia au investit în realizarea unei rețele de generatoare de iodură de argint, amplasate în ochiuri la o distanță de 10 km unii de alții. Legislația franceză nu permite fermelor să achiziționeze sisteme de rachete din cauza controlului de trafic aerian și de aceea sunt interzise, dar nu are legătură cu tehnologia, ci cu implementarea, ceea ce este cu totul altceva.

În țările din Europa de Est aceste sisteme sunt gestionate de stat și în colaborare cu organismele care coordonează traficul de zbor al avioanelor, iar după unele informații putând avea și utilizare militară în caz de conflict.

Legat de eficacitatea acestor agenți de însămânțare sunt de reținut rezultatele cercetătorilor români (Bîrsan şi colab. 2019, citați de Pirani și colab. 2023), confirmate și pe plan extern, în care au comparat tehnicile de însămânțare pe bază de rachetă (agent cu iodură de argint), generatorul de la sol (iodură de argint amestecată cu agenți acetonă), aeronave (agenți de aerosoli) și tehnicile de însămânțare cu grindina (unde sonore) și ,,au identificat prima și a doua opțiune ca mecanismele cele mai eficiente, respectiv cel mai puțin eficiente din România.”

Ipoteza II - Fermierii suspectează că iodura de argint ,,nu este chiar atât de inofensivă”.

În materialul difuzat de DIGI24 (15 aprilie 2024), se lăsa să se înțeleagă că fermierii acuză fenomene de poluare în urma folosirii rachetelor antigrindină, ceea ce ar pune în pericol solul și sănătatea umană. Ce este drept, nu se menționează cine ar fi autorii acestor afirmații, dar asta până la urmă contează mai puțin.

Ca urmare a ridicării acestor aspecte, MADR a remis următorul punct de vedere la acuzațiile emise de către fermierii contestatari, arătând că: Exploatarea infrastructurii operaționale din cadrul Sistemul național antigrindină și de creștere a precipitațiilor (SNACP) nu produce o creștere a emisiilor de poluanți în aer, apă sau sol. Tehnologia aplicată curent în SNACP nu este poluantă și respectă opțiunile de protecția mediului asumate de România în cadrul politicilor europene”.

Pornind de la cele două poziții de mai sus, sunt de reținut opiniile mai multor cercetători care arată că însămânțarea norilor nu prezintă niciun risc pentru mediu sau sănătate (Cooper și Jolly, 1970; Ćurić și Janc, 2013 citați de Kathri și colab. 2021), lucru reliefat într-un alt studiu și de Causape și colab. (2021) care susține că ,,rezultatele noastre arată că după 50 de ani de emisii de iodură de argint în atmosferă, acumularea de argint în apele și sedimentele zonelor joase, inclusiv în unele zone umede cu valoare ecologică ridicată, nu a fost semnificativă”.

În fapt, acest lucru a fost concluzia mai multor studii, unde se arată că acumularea de iodură de argint nu este periculoasă pentru oameni (Standler și Vonnegut, 1972: WMA, 2009, citați de Causape și colab. 2021).

Directivele internaționale publicate de Organizația Mondială a Sănătății (OMS, 2003) sau de Uniunea Europeană (CE, 2000; CE, 2006a; CE, 2006b) nu stabilesc praguri pentru conținutul de argint în apă și alimente, nici măcar nu includ argintul în lista poluanților care ar trebui controlați.

De fapt, și aici chiar este o parte haioasă, sărurile de argint sunt folosite pentru a controla poluarea cu bacterii din apa potabilă, dar și în anumite tipuri de fertilizanți foliari pentru agricultură, iar pragul de risc pentru sănătate este stabilit la 0,1 mg/L. Acest prag este, de asemenea, standardul secundar pentru argint stabilit de Agenția pentru Protecția Mediului din SUA (US EPA, 2015, citat de Causape și colab. 2016).

Aici se mai impune o mențiune legată de tehnica de însămânțare, deoarece în cazurile generatoarelor care ard emulsia de acetonă și iodură de argint, probabilitatea (demonstrată de studii) de a avea o acumulare în sol în apropierea generatorului este mai mare, lucru logic de altfel deoarece când se emit aerosolii unii se depun imediat pe sol sub influența vaporilor de apă din atmosferă.

Doar că la noi majoritar este sistemul bazat pe rachete unde depunerea pe și în sol este infimă, deoarece lansarea iodurii de argint se face la cca 8-10.000 de metri în atmosferă, iar vaporii se împrăștie pe suprafață mare, tocmai asta fiind ideea.

Ipoteza III – Sistemul antigrindină accentuează seceta prin reducerea cantităților de precipitații în arealele respective.

Referitor la această ipoteză (părere) aș începe cu ceea ce se afirmă de către Societatea Americană de Meteorologie și Organizația Mondială a Meteorologiei, care arată că au susținut credibilitatea științifică a însămânțării norilor. Astfel, pe baza dovezilor statistice, însămânțarea norilor poate crește precipitațiile sezoniere cu 5% până la 15% în programe concepute și conduse corespunzător (DeFelice și colab., 2014; Griffith și colab., 2009; Mason și Chaara, 2007; Rasmussen și colab., 2018; citați de Kathri și colab. 2021), dar trebuie ținut cont de faptul că succesul însămânțării norilor depinde de temperatură, de nucleele de apă și de gheață disponibile în atmosferă și de concentrațiile naturale de gheață și picături (NRC, 2004; Reynolds, 2015).

În continuare, propun cititorilor un studiu extrem de interesant realizat de Petit și colab. (2023), care analizează oarecum o situație similară cu cea înregistrată la noi.

Studiul are ca subiect un conflict deschis derulat în vara anului 2020, în Burgundia (Franța) între viticultori și crescătorii de vaci Charolaise, iar ceea ce a atras atenția cercetătorilor a fost un aspect social, în sensul că cei care se înfruntau făceau parte din același sector, adică cel agricol. Toată tărășenia a plecat, cum altfel, de la generatoarele de aerosoli pe bază de iodură de argint, amplasate de către viticultori în anul 2017 pentru protecția viilor, la distanțe de 10 km unul de altul și astfel formându-se o rețea, care a fost conectată la un sistem de radare operate de o firmă privată și care să le genereze informații legate de formarea celulelor convective generatoare de grindină. Doar că și pe acolo, ca și pe la noi sau în multe alte zone, se mai trezește câte unul să facă o afirmație, care nu-i așa, având tentă conspirativă este mai credibilă decât orice alte afirmații ale celor de meserie sau instituții de profil. Astfel s-a lansat în spațiul public și s-a preluat apoi de presă, ideea că instalarea generatoarelor ar avea ca efect secundar instalarea secetei, iar ca fatalismul să fie integral, această perioadă s-a suprapus pe o perioadă de trei ani secetoși, atât primăvara cât și vara, respectiv 2018, 2019 și 2020. După această perioadă, acuzațiile s-au copt și conflictul a izbucnit riscând să degenereze în mod violent, fapt accentuat și de intervenția asociațiilor de profil (recunoaștem asemănarea?), care s-au simțit obligate fiecare în parte să își susțină membrii, dar fără să mai reflecteze asupra motivelor conflictului și care ar avea dreptate, adică mai ca la noi prin Ferentari când se confruntă găștile, nefiind important cine are dreptate, ci al cui este. Doar că, autoritățile, mai pe fază decât la noi, au chemat pe unii mai pricepuți decât ei, adică cercetători pe partea tehnicilor de însămânțare, dar și sociologi, un mediator profesionist și tot ce a mai trebuit, pentru a face lumină asupra cazului.

Fără a lungi foarte mult povestea, rezultatele s-au referit la problemele tehnice și sociale și astfel prima concluzie arată că legat de suspiciunile fermierilor cu privire la legăturile dintre utilizarea generatoarelor și secetă, analiza nu arată niciun efect al generatorilor asupra precipitațiilor în cele trei zone (A/B, C/D și F/E) studiate. Diferențele de precipitații observate între zonele cu și fără generatoare se datorează variabilității spațiale în distribuția precipitațiilor. Aceste diferențe sunt identice în zilele cu și fără utilizarea generatoarelor”.

O a doua concluzie interesantă și care din păcate și la noi puțini o cunosc și mai puțini o înțeleg, este legată de faptul că secetele actuale ale umidității solului fac parte dintr-un context climatic mai larg. Dacă fermierii sunt obișnuiți să urmărească evoluția precipitațiilor, fiecare având un pluviometru în colțul grădinii, evaporarea datorată temperaturilor ridicate și uscăciunea solului cu impact asupra vieții solului sunt parametri mult mai greu de înțeles pentru ei și pentru care ei in general nu au informații”.

Privitor la cea de-a doua concluzie o să-mi permit un comentariu care sunt sigur ca îmi va atrage critici, dar cred că trebuie să înțelegem că în Franța nimeni nu poate fi fermier fără un minimum de pregătire CERTIFICATĂ, iar dacă acolo avem astfel de probleme de înțelegere, trebuie să fim înțelegători (dar să luăm măsuri) și cu situația de la noi. Totuși, pe de altă parte trebuie să pricepem că lipsa unei pregătiri de specialitate dublată de situații foarte grele cum ar fi seceta, va întuneca de multe ori și rațiunea, acolo unde presupunem că ar mai exista.

Studiul arată că astfel de situații au existat și în statul american Dakota de Nord, unde scenariul a fost relativ asemănător. De aceea se ridică în cadrul studiului și observația care trebuie reținută de autorități, dar și de organizațiile profesionale, că social lucrurile se dezvoltă asemănător.

În ambele cazuri (atât cel francez, cât și cel american), punctele comune ale problemelor sunt seceta, preocuparea crescătorilor de bovine ca victime ale secetei și utilizarea tehnologiilor (avioane de însămânțare a norilor sau generatoare) pentru a modifica vremea și a proteja împotriva grindinei. În toate cazurile, ipotezele și observațiile fermierilor au devenit certitudini (ne aducem aminte de argumentul invocat de FAPPR) și s-au transformat în zvonuri și mobilizări, care au avut ecou în presă. Astfel, în ambele cazuri, în timp ce alți actori, precum proprietarii de livezi sau viticultorii, se pot proteja, crescătorii de vite se simt neputincioși.

Legat de situația de la noi, poate merită să menționăm că, actualmente, sistemul antigrindină acoperă vreo 2,3 milioane de hectare, iar cele mai multe rachete anul trecut s-au tras pe zona Olteniei, unde producțiile au fost foarte bune, iar precipitațiile au fost în mediile multianuale. La fel sunt și alte zone unde situația este identică cu cea de mai sus. Atunci, se pune întrebarea de ce ar fi situațiile diferite dacă sunt cauzate de același sistem?

Poate că ar trebui să ținem cont că zona de est și sud-est a fost afectată de o secetă multianuală, lucru care nu ar trebui exclus și aici trebuie să ne gândim și la faptul că și regiuni neacoperite de scutul antigrindină au suferit de aceeași lipsă de apă.

Mai mult, acest sistem funcționează în România de mult mai mult timp, dar problemele au apărut doar în ultimii ani, când a fost și secetă extrem de puternică în mai mult de jumătate din țară.

Poate că ar trebui să avem în vedere dacă pornim de la premisa (nesusținută de argumente în opinia mea) că sistemul antigrindină provoacă probleme, atunci la Iași, Galați sau Vaslui de ce să nu ne gândim că ar putea fi un efect și al lansatoarelor din Republica Moldova, care acoperă 80% din suprafața agricolă și nu s-a plâns de secetă din această cauză. Distanța este de doar 100-200 km între zonele noastre și ale lor, iar studiile arată că efectul însămânțării poate dura și peste 100 km. Ce facem, trecem granița să le închidem și pe acelea?

Oare anii trecuți la Călărași a fost secetă din cauza lansatoarelor de la bulgari care, o parte, sunt lângă Dunăre? Ori, poate că ar trebui să mai analizăm serios și constructiv care este situația și realitatea?

Ipoteza IV - Sistemul antigrindină ,,generează efecte dezastruoase asupra activităților agricole din zonele de influență”.

Aici este de menționat că nu sunt sigur la ce efecte se referă afirmația, deoarece nu au fost detaliate, dar aș dori să menționez că Kathri și colab. (2021) citează mai multe studii care arată faptul că însămânțarea norilor nu prezintă niciun risc pentru mediu sau sănătate (Cooper și Jolly, 1970; Ćurić și Janc, 2013), este mult mai puțin costisitoare decât alte tehnologii de creștere a precipitaților și colectării apei și poate avea raporturi mari beneficiu-cost (Reynolds, 2015).

Un alt aspect, care consider că merită amintit, este faptul că nici un studiu nu arată că utilizarea acestor tehnici ar reduce precipitațiile și creșterea efectului de secetă, ci din contră, chiar și opiniile critice (Rivera și colab. 2020, citați de Pirani și colab 2023), care și acestea există, susțin că rezultatele acestor tehnici nu ar fi satisfăcătoare, iar rezultatele nu sunt statistic asigurate, dar nimeni nu afirmă că ar fi negative și ar crea alte efecte, ceea ce este o mare diferență.

Vă propun și un exercițiu simplu de gândire în care dacă ar fi să mergem pe teoria conspirației că acum ceva timp în Dubai am avut acele ploi abundente (care au fost între 120-254 mm/mp) ca urmare a însămânțării norilor, noi cum putem susține că la noi avem secetă mai puternică, principiul fiind identic între cele două tehnici aplicate?

De fapt, în mai multe studii, cum a fost cel realizat de Agenția națională de studiu și luptă contra evenimentelor atmosferice între 2000-2009 (Dessens și colab. 2016), unde se arată faptul, cel puțin pentru Franța și Spania, că dacă însămânțarea solului se efectuează începând cu trei ore înainte ca grindina să cadă la sol cu o rețea de generatoare AgI cu ochiuri de 10 km situate în zonele în curs de dezvoltare, fiecare generator arzând aproximativ 9 g de AgI pe oră, energia căderii grindinei din zilele cele mai severe de grindină este scăzută cu aproximativ 50%.

Alte studii (citate de Pirani și colab. 2023) confirmă aceste rezultate și aici am în vedere Istrate și colab., (2016), care au investigat însămânțarea norilor de rachete folosind iodură de argint și au arătat că a redus daunele cauzate de grindină în România, sau Columbié și colab. (2012), care au studiat operațiunile duale de însămânțare folosind materiale higroscopice și glaciogenice în Texas, SUA, și au descoperit că creșterile masei precipitațiilor ar putea fi mai mari decât cele observate în mod obișnuit în cazurile însămânțate și, nu în ultimul rând Radinović și Ćurić (2007) sau Abshaev și colab. (2021), care s-au referit, de asemenea, la impactul favorabil al suprimării grindinei folosind agentul de însămânțare glaciogen în studiile lor din Serbia și Rusia. 

Ipoteza V - Organizația Mondială a Meteorologiei ar afirma că nu sunt recomandate intervențiile în atmosferă.

Legat de acest aspect este de menționat că pe 9 decembrie 2023 a avut loc la Dubai în EUA, o conferință organizată de NCM sub egida Organizației Mondiale a Meteorologiei unde se arăta pe fișa de prezentare că: Semnificația acestui eveniment secundar se extinde dincolo de domeniul meteorologiei și tehnologiei. Modificarea vremii, în special îmbunătățirea ploii și tehnologiile de însămânțare a norilor, joacă un rol crucial în contextul mai larg al atenuării schimbărilor climatice și al dezvoltării rezistenței la climă. Îmbunătățindu-ne capacitatea de a optimiza precipitațiile și de a gestiona mai eficient resursele de apă, facem pași în abordarea deficitului de apă indus de schimbările climatice. Capacitatea de a susține precipitațiile în regiunile aride poate ajuta la atenuarea impactului secetelor prelungite și poate contribui la refacerea ecosistemului. În plus, precipitațiile crescute pot ajuta la reîncărcarea acviferelor, reducând dependența de practicile nedurabile de extracție a apelor subterane. În acest fel, modificarea vremii nu numai că abordează provocările imediate legate de apă, ci și sprijină eforturile pe termen lung de rezistență la climă, făcându-l o componentă vitală a strategiei noastre de combatere a schimbărilor climatice și de a crea un viitor mai durabil pentru planeta noastră”.

Am menționat de altfel și anterior faptul că Societatea Americană de Meteorologie și Organizația Mondială a Meteorologiei au susținut credibilitatea științifică a semănării norilor. Pe baza dovezilor statistice, însămânțarea norilor poate crește precipitațiile sezoniere cu 5% până la 15% în programe concepute și conduse corespunzător”, (DeFelice și colab., 2014; Griffith și colab., 2009; Mason și Chaara, 2007; Rasmussen și colab., 2018; citați de Kathri și colab 2021).

Personal, consider că aici nu ar mai fi nimic de spus.

 

În loc de concluzii

 

Poate ar mai fi multe de analizat și discutat pe aceste aspecte, dar eu cred că pentru un fermier am discutat destul și consider că poate toți cei implicați ar trebui să caute căi mai corecte de conlucrare.

A nu se înțelege că eu consider că sistemul antigrindină este infailibil, dar argumentele pro sau contra pot veni doar de la cercetare, iar noi fermierii am putea doar să sugerăm teme de analiză la care ulterior să primim răspuns.

Mai mult, cred că organizațiile profesionale, indiferent de numele lor, ar trebui să fie preocupate de soarta membrilor, dar în același timp trebuie să își fundamenteze mai cu grijă temele și revendicările, mai ales atunci când poate ai avut parte de o serie de eșecuri în ultima perioadă.

Nu în ultimul rând, cred că și la noi ar trebui să se facă un studiu legat de situația conflictuală legată de sistemul antigrindină, dar de institute și cercetători, nu de entități fără nume și chip, iar în paralel specialiștii de la SNACP ar trebui să fie obligați să comunice mai mult pe această temă, inclusiv prin campanii de explicare, prezentare de rezultate, invitarea unor omologi din alte țări, toate făcute în colaborare cu organizațiile profesionale și MADR.

În rest, numai de bine!

 

Referințe bibliografice

Jesús Causapé, Jorge Pey ,  José María Orellana-Macías, ,Jesús Reyes - Influence of hail suppression systems over silver content in the environment in Aragón (Spain). I: Rainfall and soils - Science of The Total Environment Volume 784, 25 August 2021)               
Jesús Causapé, José María Orellana-Macías, Blas Valero-Garcés, Iciar Vázquez  - Science of The Total Environment - Volumul 779, 20 iulie 2021)
Dessens, JL Sánchez, C. Berthet, L. Hermida, A. Merino - Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects - Atmospheric Research Volume 170, 15 March 2016, Pages 98-111
Krishna B. Khatri, Binod Pokharel, Courtenay Strong doctorat   - Development of hydrologically-based cloud seeding suspension criteria in the Western United States - Atmospheric Research - Volume 262, November 2021)
Sandrine Petit ,Thierry Castel ,Gabrielle Henrion ,Yves Richard , Mamadou Traore , Marie-Hélène Vergote & Juliette Young - Changing local climate patterns through hail suppression systems: conflict and inequalities between farmers and wine producers in the Burgundy Region (France) - Regional Environmental Change - Volume 23, article number 89, (2023)
Farshad Jalili Pirani, Mohammad Reza Najafi, Paul Joe, Julian Brimelow, Gordon McBean, Meghdad Rahimian, Ronald Stewart, Paul Kovacs   - A ten-year statistical radar analysis of an operational hail suppression program in Alberta - Atmospheric Research Volume 295, November 2023, 107035
Matthew E. Tuftedal, David J. Delene, Andrew Detwiler  - Precipitation evaluation of the North Dakota Cloud Modification Project (NDCMP) using rain gauge observations - Atmospheric Research - Volume 269, May 2022
Vishal Singh Rana ,Sunny Sharma ,Neerja Rana ,Umesh Sharma ,Vikrant Patiyal , Banita & Heerendra Prasad - Management of hailstorms under a changing climate in agriculture: a review -   Environmental Chemistry Letters -  Volume 20, pages 3971–3991, (2022)

 

Articol scris de: dr. ing. ȘTEFAN GHEORGHIȚĂ, fermier (jud. Brăila) și membru LAPAR

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Gânduri de fermier

Aduc în atenția fermierilor fungul Fusarium graminearum care produce boala numită „albirea și înroșirea spicelor”. În zonele din țară unde au căzut precipitații în perioada înfloritului, iar temperaturile au fost favorabile realizării infecțiilor, este posibil să apară fuzarioza.

Schimbările climatice din ultimii ani au influențat pozitiv dezvoltarea fungilor din genul Fusarium, favorizând apariția epidemiilor la grâu. Cea mai recentă epidemie de Fusarium la cerealele din Câmpia Banatului (și nu numai) a fost în anul 2019, an în care calitatea a fost foarte scăzută, în principal din cauza prezenței micotoxinelor fusariene în cantități care au depășit limitele permise.

Pierderile produse de F. graminearum la grâu în anii epidemici pot fi uriașe. Pagubele se datorează în mare parte sterilității spicelor, MMB-ului scăzut (masa a o mie de boabe), dar mai ales prezenței micotoxinelor în cariopse.

Fusarium graminearum este un patogen deosebit de periculos al cerealelor deoarece produce micotoxine încadrate în două clase chimice: trichothecene și zearalenon. Dintre trichothecene amintim: vomitoxina (deoxynivalenol sau DON), micotoxina T – 2, diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS) şi nivalenol. Aceste micotoxine sunt iritanţi puternici şi au fost asociate atunci când sunt consumate cu simptome ca: vomă, refuzul hranei şi posibil ulcer gastric. Cele mai semnificative trichothecene sunt toxina T – 2 şi deoxynivalenolul, care apar în cantităţi destul de mari la cereale. Zearalenonul face parte din a doua clasă chimică de toxine produse de F. graminearum. Când este consumat de animale este asociat cu probleme de reproducere, cum sunt: avorturile, căldurile false, reabsorbţia fetusului şi a mumiilor [Cotuna & Popescu, 2009].

Fusarium și Alternaria sp. (foto din anul 2023)

Foto din anul 2023

În Câmpia Banatului, în anul 2023 au existat lanuri infectate, însă incidența spicelor atacate a fost mai scăzută, la fel și intensitatea. De la epidemia de Fusarium graminearum din anul 2019, putem aprecia că acest patogen nu a mai creat probleme deosebite în Banat, deoarece nu s-au întrunit condițiile climatice (precipitații continue și temperaturi moderate). Vom vedea ce va aduce această primăvară.

Prin intermediul acestui articol venim în sprijinul dumneavoastră cu informații despre tabloul simptomatic al bolii, biologia, epidemiologia și „combaterea” patogenului Fusarium graminearum. Aceste informații vă vor ajuta în viitor să vă protejați din timp culturile.

Foto din anii trecuți

 

Micotoxinele fusariene, pericol pentru sănătatea oamenilor și animalelor

 

În fuzarioza grâului pot fi implicate mai multe specii de Fusarium. Studii numeroase arată că fuzarioza spicelor de grâu poate fi produsă de Fusarium graminearum, Fusarium culmorum, Fusarium nivale, Fusarium poae, Fusarium sporotrichioides [Miller, 1994; Lidell, 2003; Wegulo, 2012; Zrcková et al., 2019]. Dintre speciile menționate, Fusarium graminearum este prezentă în regiunile temperate cu climat mai cald, comparativ cu Fusarium culmorum care preferă zonele mai reci [Wang & Miller, 1988; Snijders & Perkowski, 1990; Miller et al., 1991; Miller, 2002]. În Câmpia Banatului, specia predominantă care produce infecții la spic este F. graminearum [Cotuna et al., 2013; Cotuna et al., 2022].

Dintre speciile de Fusarium producătoare de DON, F. graminearum este considerată cea mai importantă [Paraschivu et al., 2014; Paul et al., 2005; Anon, 1993c]. Deoxynivalenolul (DON) aparține familiei chimice de sequiterpene, fiind derivat din trichodiene (precursorul biochimic al tuturor trichothecenelor). DON - ul este foarte stabil din punct de vedere chimic. Semințele infectate de Fusarium conțin întotdeauna și micotoxine fusariene. Dintre acestea, DON - ul a fost găsit frecvent în cantități mari [McMullen et al., 1997]. După Wegulo (2012), cu cât procentul de boabe fusariate este mai mare cu atât și cantitatea de DON va fi mai ridicată. De altfel, marea majoritate a cercetătorilor corelează prezența deoxynivalenolului în cariopse cu intensitatea atacului din câmp și procentul de boabe fusariate [Cowger & Arellano, 2013]. Dacă ajunge în hrana oamenilor, deoxynivalenolul poate produce intoxicații alimentare, care se manifestă prin greață, vărsături, diaree, dureri de cap, dureri abdominale, febră etc [Lidell, 2003; Sobrova et al., 2010].

Până în acest an, limita maximă de DON admisă de legislația europeană în cerealele neprocesate era de 1250 ppb (1,25 ppm) [Commission Regulation (EC) No 1881/2006].

În Regulamentul (UE) 2024/1022 al CE din 8 aprilie 2024, de modificare a Regulamentului (UE) 2023/915 cu privire la nivelurile maxime de deoxinivalenol în produsele alimentare, limita maximă de DON permisă la cerealele neprocesate a scăzut la 1000 ppb. Noile reglementări intră în vigoare începând cu data de iulie 2024 și nu se aplică retroactiv.

grau intro cotuna

A doua micotoxină importantă produsă de Fusarium graminearum este „toxina T - 2”, care apare în cantități semnificative la cereale, alături de deoxynivalenol [Annon, 1993b]. Intoxicația se manifestă prin simptome de febră, vomă, convulsii, anemie, inflamații acute ale aparatului digestiv.

Alt metabolit toxic produs de fungul F. graminearum este zearalenona (ZON). Zearalenona apare la grâul fusariat alături de DON și T - 2. Această toxină afectează eficiența reproductivă, nu și pofta de mâncare. Sindromul estrogenic ce apare în urma ingerării de hrană contaminată se caracterizează prin: umflarea glandelor mamare, hipertrofia uterină, umflarea vulvei, infertilitate [Marasas, 1991]. Cei mai sensibili sunt porcii.

Limitele maxime admise de ZON și T - 2 în grâul neprocesat sunt de 100 ppb. Cele trei micotoxine, DON, ZON și T - 2 nu sunt considerate carcinogenice. Zearalenona nu se transmite prin lapte sau alte produse lactate.

 

Factorii de risc pentru apariția infecțiilor

 

Risc crescut de infecții cu Fusarium graminearum se înregistrează în anii când se întrunesc următorii factori:

  • Temperaturi optime pentru realizarea infecțiilor. După Anderson (1948), temperatura optimă pentru realizarea infecțiilor este de 250C, indiferent de cât timp durează umezeala. După De Wolf et al. (2003), contează durata în ore a temperaturilor cuprinse între 15 - 300C, înainte cu șapte zile de înflorit. În condiții de vreme caldă cu temperaturi cuprinse între 25 - 300C și umiditate continuă, simptomele de Fusarium la spic (albire) pot apărea în 2 - 4 zile de la realizarea infecției [Wegulo, 2012]. Astfel, o cultură aparent sănătoasă, brusc poate să prezinte simptome de boală;

  • Precipitațiile. Precipitațiile continue dinainte de înflorit și în timpul dezvoltării cariopselor favorizează acumularea de cantități mari de DON în cereale. Cantitățile de precipitații din lunile mai și iunie predispun cerealele la infecția cu Fusarium. Perioadele în care grâul poate fi infectat sunt la înflorit sau imediat după înflorit [Hernandez Nopsa et al., 2012; Wegulo, 2012]. De Wolf et al. (2003) arată importanța duratei în ore a precipitațiilor înainte cu șapte zile de înflorit;

  • Umiditatea relativă a aerului (UR%). Cu cât expunerea la umezeală este mai îndelungată, intensitatea atacului la spic crește. Chandelier et al. (2011), într-un studiu efectuat pe o perioadă de șapte ani, arată o corelație puternică între umiditatea relativă medie de peste 80% și cantitatea de DON acumulată în cariopse;

  • Tehnologiile practicate în prezent de către fermieri pot influența pozitiv infecțiile cu Fusarium, cât și acumularea de micotoxine. Sistemele de cultivare „minimum tillage” sau „no tillage” (utile pentru conservarea solului), densitățile mari practicate, lipsa rotației, au dus la creșterea sursei de inocul în resturile vegetale ce rămân la suprafața solului [Unger, 1994; Watkins, 1994; Matei et al., 2010];

  • Soiurile sensibile.

 

Recunoașterea simptomelor

 

Fusarium graminearum poate ataca plantele de cereale păioase pe tot parcursul perioadei de vegetație, dacă condițiile climatice preferate se întrunesc.

Tabloul simptomatic al bolii se prezintă după cum urmează:

  • Plăntuţele care provin din seminţe infectate se îngălbenesc şi în cele din urmă putrezesc;

  • În faza de înfrăţire, rădăcinile şi coletul sunt brunificate din cauza infecţiilor realizate de miceliul şi clamidosporii din sol. Plantele atacate continuă să vegeteze slab şi vor forma spice sterile;

  • Forma cea mai gravă de atac este după înspicare. Spicele, iniţial se albesc parţial (câteva spiculeţe) sau total, apoi se înroşesc şi se acoperă cu un înveliş micelian, alb – roz sau alb – rubiniu, uneori portocaliu - somon, pe care se observă sporodochiile ciupercii (forma imperfectă). Pe spicele înroşite (pe palee, ariste sau boabe) se observă puncte negre care sunt periteciile ciupercii (forma perfectă). Cariopsele infectate sau fuzariate rămân mici, zbârcite, cenuşii sau rozii iar germinaţia şi puterea de străbatere va fi slabă [Popescu, 2005].

Foto din anul 2019

 

Ciclul de viață

 

Fusarium graminearum este agentul etiologic dominant al fuzariozei spicului la cerealele păioase cultivate în România. Ciuperca rezistă în resturile de plante vegetale, în sol și în semințe. Vremea umedă prelungită în timpul perioadei de vegetație favorizează creșterea și sporularea ciupercii. Sporii ciupercii sunt purtați de vânt și de picăturile de apă pe spicele de grâu. Grâul este susceptibil a fi infectat în perioada înfloritului și când cariopsele încep să se formeze [Popescu, 2005].

Fusarium graminearum rezistă în sol sub formă de miceliu saprofit, clamidospori şi peritecii. O sursă importantă de transmitere este sămânţa infectată din care ies plăntuţe bolnave care mor (infecţie sistemică). Infecţiile primare pot fi realizate de micelii sau clamidosporii din sol dar şi de ascosporii şi conidiile care ajung pe părţile aeriene ale plantelor. După realizarea infecției, miceliul care se dezvoltă intracelular va intra în sporogeneză, formându-se astfel conidiile ce asigură infecţiile secundare (foarte păgubitoare mai ales în perioada înfloritului) – Popescu, 2005.

Dezvoltarea acestui patogen este favorizată de vremea umedă (umiditatea aerului peste 90%, prezenţa ploilor) şi de temperaturile moderate (peste 200C) şi apoi de factorii agrofitotehnici (monocultura, solurile acide, azotul în exces, semănatul des, sensibilitatea soiurilor).

Infecţia continuă şi în depozite. Contaminarea cu micotoxinele produse de F. graminearum este asociată cu amânarea excesivă a recoltatului şi cu depozitarea cerealelor umede. Acumularea de micotoxine este masivă la temperaturi de 21 – 290C şi la o umiditate a boabelor de peste 20%.

 

Managementul integrat al fuzariozei grâului

 

Putem combate sau nu fuzarioza la cereale? O întrebare la care este greu de răspuns. Măsurile din cadrul sistemului de combatere integrată pot ține sub control destul de puțin fuzarioza dar nu întotdeauna ne feresc de infecții. De ce? Pentru că orice măsuri am respecta, condițiile climatice sunt esențiale în realizarea infecțiilor.

Atac la cariopse. Stanga, cariopse fusariate, dreapta cariopsă aparent sănătoasă (foto din anul 2023) 

Foto din anul 2023. Atac la cariopse. Stanga cariopse fusariate dreapta cariopsă aparent sănătoasă

Măsuri profilactice

Măsurile de profilaxie sunt foarte importante dar nu ne feresc de infecții dacă condițiile climatice sunt favorabile patogeniei. Totuși, respectarea lor ne poate ajuta, în sensul că vom avea o rezervă mai mică în sol de inocul. În acest sens, este bine ca fermierii să respecte următoarele măsuri:

  • Cultivarea de soiuri adaptate climei locale şi zonei unde vor fi cultivate.

  • Cultivarea unor soiuri care tolerează mai bine patogenul. Despre rezistență totală nu putem discuta. Rezistența soiurilor de grâu la infecția cu Fusarium este foarte importantă și intens studiată astăzi. Sunt descrise până acum cinci tipuri de rezistență: tipul I - rezistența la infecția inițială (reacții de apărare); tipul II - rezistența la răspândirea agentului patogen în țesutul infectat; tipul III - rezistența la infecție a semințelor; tipul IV - toleranța la infecție; tipul V - rezistența la micotoxine [Mesterhazy, 1995; Ma et al., 2009; Kosaka et al., 2015; Zhang et al., 2020]. După Bai & Shaner (2004), crearea unor soiuri cu rezistență la Fusarium poate fi o strategie foarte bună pentru controlul acestei boli. În SUA, preocupări de ameliorare a grâului pentru rezistența la Fusarium sp. există de prin anul 1929. Un studiu din 1963 arată că, după un ciclu de cercetari de nouă ani, toate plantele de grâu pot fi infectate în proporție mai mare sau mai mică [Schroeder & Christensen, 1963].

  • Controlul dăunătorilor în lanurile de cereale nu trebuie neglijat, deoarece se ştie că favorizează infecţiile cu Fusarium graminearum.

  • Densităţile mari trebuie evitate.

  • Fertilizarea cu azot şi alte substanţe nutritive să se facă în mod echilibrat.

  • Rotaţia culturilor trebuie respectată, deoarece s-a constatat că reduce riscul de contaminare cu micotoxine produse de ciuperca Fusarium graminearum.

  • Resturile vegetale să fie îngropate prin intermediul arăturii.

  • Recoltarea la timp, uscarea la 24 de ore de la recoltare şi supravegherea umidităţii boabelor la depozitare [Cotuna & Popescu, 2009].

Dacă aceste măsuri sunt respectate, sursa de inocul va fi diminuată, NU şi eliminată.

grau fusarium

Măsuri chimice

În funcție de condițiile climatice, tratamentele chimice pot fi eficiente sau nu. Tratarea semințelor înainte de semănat este esențială în prevenirea primelor infecții.

În România sunt omologate următoarele substanțe pentru tratarea semințelor de cereale păioase: Triticonazol; Tebuconazol; Fludioxonil + teflutrin (insecticid); Fludioxonil + protioconazol + tebuconazol; Fludioxonil; Difenoconazol + fludioxonil; Difenoconazol + fludioxonil + tebuconazol; Difenoconazol; Fludioxonil + fluxapyroxad + triticonazol; Ipconazol; Fluxapyroxad; Fludioxonil + sedaxan; Difenoconazol + fludioxonil + sedaxan; Bixafen + tebuconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].

Tratamentele din vegetație

La modul general, în literatura de specialitate se recomandă două tratamente în timpul sezonului de vegetație, după cum urmează: primul tratament la începutul înspicării; iar al doilea tratament la sfârșitul înfloritului.

Studiile efectuate pentru stabilirea momentelor optime de efectuare a tratamentelor (când au eficacitate maximă) recomandă următoarea strategie:

  • Tratament la BBCH 59 - când grâul nu este înflorit - eficiență ridicată.

  • Tratament la BBCH 63 - 65 - început înflorit, moment optim pentru bolile spicului în general.

  • Tratament la BBCH 69 - sfârșit înflorit - nu se recomandă (prea târziu pentru tratament) - se poate aplica doar în situații grave cu risc de infecții secundare când sunt ploi continue după înflorit.

Pentru tratamentele în vegetație sunt omologate următoarele substanțe: Azoxistrobin; Tebuconazol; Metconazol; Azoxistrobin + protioconazol; Protioconazol + tebuconazol; Azoxistrobin + tebuconazol; Kresoxim - metil + mefentrifluconazol; Benzovindiflupir + protioconazol; Benzovindiflupir; Protioconazol; Protioconazol + spiroxamină + tebuconazol; Ciprodinil; Fenpropidin; Difenoconazol + tebuconazol; Tebuconazol + trifloxistrobin; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Boscalid + protioconazol; Fluxapyroxad + piraclostrobin; Mefentrifluconazol + piraclostrobin; Bromuconazol + tebuconazol; Proquinazid + protioconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].

Fungicidele omologate trebuie utilizate doar în dozele recomandate de producători. Nu măriți dozele. Mărirea dozelor duce la apariția fenomenului de rezistență, iar rezistența la pesticide este o problemă mare a agriculturii moderne.

Tratamentele trebuie efectuate doar în zilele în care nu bate vântul și temperaturile nu sunt ridicate. Dacă după efectuarea tratamentelor intervin ploi, va trebui să repetați. Este foarte important să fie respectați timpii de pauză până la recoltat. Fungicidele utilizate la cereale au timpi de pauză destul de mari, începând de la 35 până la 50 zile.

Măsuri biologice

Combaterea biologică este foarte rar utilizată în combaterea fuzariozei la grâu și nu numai. De interes sunt antibioticele produse de bacterii (Bacillus subtilis) și fungi (Penicillium, Trichoderma, Trichothecium): fitobacteriomicina, nifimicina, fitoflavina, lavendromicina, trichotecina [Popescu, 2005].

În prezent, există un produs biologic omologat în România pe bază de Pythium oligandrum (M1 x 106 oospores/g Pythium oligandrum) pentru tratarea fuzariozei în perioada de vegetație. Tratamentele cu agenți biologici trebuie efectuate preventiv, nu curativ.

De reținut, recoltele contaminate cu micotoxine fusariene nu pot fi destinate nici pentru panificaţie, nici pentru hrana animalelor, din cauza intoxicaţiilor grave pe care le produc.

 

Bibliografie

Andersen, A. L., 1948. The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599 – 611.
Anon, 1993b. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 467 - 488.
Anon, 1993c. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 397 - 444.
Bai, G., Shaner, G., 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42: 135 - 161.
Chandelier, A., Nimal, C., André, F., Planchon, V., Oger, R., 2011. Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period 92003–2009) in Belgium. Eur. J. Plant Pathol., 130, 403 – 414.
Cotuna, O., Sărățeanu, V., Durău, C., Paraschivu, M., Rusalin, G., 2013. Resistance reaction of some winter wheat genotipes to the attack of Fusarium graminearum L. Schw. in the climatic conditions of Banat plain, Research Journal of Agricultural Science, 45 (1), p. 117 - 122.
Cotuna O., Paraschivu M., Sărăţeanu V., Partal E., Durău C. C., 2022. Impact of Fusarium head blight epidemics on the mycotoxins’ accumulation in winter wheat grains, Emirates Journal of Food and Agriculture, 34 (11), 949 - 962.
Cotuna O., Popescu G., 2009. Securitatea și calitatea produselor vegetale, siguranța vieții, Editura Mirton, Timișoara, 327 p..
Cowger, C., Arellano, C., 2013. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103: 460 - 471.
De Wolf, E. D., Madden, L. V., Lipps, P. E., 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428 – 435.
Hernandez Nopsa, J., Baenziger, P. S., Eskridge, K. M., Peiris, K. H. S., Dowell, F. E., Harris, S. D., Wegulo, S. N., 2012. Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Can. J. Plant Pathol. 34, 380 – 389.
Kosaka, A., Manickavelu, A., Kajihara, D., Nakagawa, H., Ban, T., 2015. Altered gene expression profiles of wheat genotypes against Fusarium head blight. Toxins 72: 604 - 620.
Liddell, C. M., 2003. Systematics of Fusarium species and allies associated with Fusarium head blight. In Fusarium Head Blight of Wheat and Barley; Leonard, K. J., Bushnell, W. R., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2003; pp. 35 – 43.
Ma, H., Ge, H., Zhang, X., Lu, W., Yu, D., Chen, H., Chen, J., 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathology, 157, 166 – 171.
Marasas, W. F. O., 1991. In Mycotoxins and Animal Foods (J. E., Smith, and R. S., Henderson, editors), CRC Press, Inc., pp. 119 - 139.
Matei, G., Păunescu, G., Imbrea, F., Roşculete E., Roşculete, C., 2010. Rotation and fertilization - factors in increasing wheat production and improving the agro productive features of the brown reddish soil from central area of Oltenia, Research Jurnal Of Agricultural Science, Vol. 42 (1). USAMVB Timișoara, pag. 182 - 189.
Mesterhazy, A. I., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant breeding 114 5: 377 - 386.
McMullen, M., Jones, R., Gallenberg, D., 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 81:1340 - 1348.
Miller, J. D., Greenhalgh, R., Wang, Y., Lu, M., 1991. Trichothecene chemotypes of three Fusarium species. Mycologia, 83, 121 – 130.
Miller, J. D., 1994. Epidemiology of Fusarium ear diseases of cereals. In Mycotoxins in Grain. Compounds Other than Aflatoxin; Miller, J. D., Trenholm, H. L., Eds.; Eagan Press: St. Paul, MN, USA, 1994; pp. 19 – 36.
Miller, J. D., 2002. Aspects of the ecology of Fusarium toxins in cereals. In Mycotoxins and Food Safety; DeVries, J. W., Trucksess, M. W., Jackson, L. S, Eds.; Kluwer Academic/Plenum Publishers: New York, USA, pp. 19 – 28.
Paraschivu, M., Cotuna O., Paraschivu M., 2014. Integrated disease management of Fusarium head blight, a sustainable option for wheat growers worldwide, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, vol. XLIV, p. 183 - 187.
Paul, P. A., Lipps, P. E., Madden, L. V., 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology 95:1225 - 1236.
Popescu G., 2005. Tratat de patologia plantelor, vol. II Agricultură, Editura Eurobit, 341 p..
Snijders, C. H. A., Perkowski, J., 1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology, 80, 566 – 570.
Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R., 2010. Deoxynivalenol and its toxicity. Interdisc. Toxicol., 3, 94 – 99.
Schroeder, H. W., Christensen, J. J., 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53 7, 1: 831 - 838.
Unger, P. W., 1994. Residue production and uses–an introduction to managing agricultural residues. In Managing Agricultural Residues; Unger, P. W., Ed., Lewis Publishers: Boca Raton, F. L., USA, pp. 1 – 6.
Zhang, W., Boyle K., Brûlé - Babel, A. L., Fedak, G., Gao, P., Robleh Djama, Z., Polley, B., Cuthbert R. D., Randhawa, H. S., Jiang, F., Eudes, F., Fobert, P. R., 2020. Genetic Characterization of Multiple Components Contributing to Fusarium Head Blight Resistance of FL62R1, a Canadian Bread Wheat Developed Using Systemic Breeding. Front. Plant Sci. 11:580833.
Zrcková, M., Svobodová - Leišová, L., Bucur, D., Capouchova, I., Konvalina, P., Pazderu, K., Janovská D., 2019. Occurence of Fusarium spp. In hulls and grains of different wheat species, Romanian Agricultural Research, No. 36, 173 - 185.
Watkins, J. E., Boosalis, M. G., 1994. Plant disease incidence as influenced by conservation tillage systems. In Managing Agricultural Residues; Unger, P. W., Ed. Lewis Publishers: Boca Raton, F. L., USA, 261 – 283.
Wegulo, S. N., 2012. Factors influencing Deoxynivalenol accumulation in small grain cereals, Toxins, 4, 1157 - 1180.
Wang, Y. Z. and Miller, J. D., 1988. Screening techniques and sources of resistance to fusarium head blight. In: A. R., Khlatt, (ed), Wheat production: constraints in tropical environments. CIMMYT, Mexico. 239 - 250.
***. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
***. 2013. Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products.
***. 2024. REGULAMENTUL (UE) 2024/1022 AL COMISIEI din 8 aprilie 2024 de modificare a Regulamentului (UE) 2023/915 în ceea ce privește nivelurile maxime de deoxinivalenol în produse alimentare, Jurnalul Oficial al Uniunii Europene, 9.4.2024, ELI: http://data.europa.eu/eli/reg/2024/1022/oj.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna (realizate în anii trecuți)

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Încă de la începutul primăverii am făcut informări cu privire la prezența fungului Erysiphe cruciferarum în culturile de rapiță din județul Timiș. De altfel, patogenul era prezent încă din toamna anului 2023. Mulți au fost suspicioși atunci.

Iată că, acum făinarea a urcat în etajele superioare ale plantelor de rapiță, iar silicvele sunt cuprinse în întregime de micelii. Asta înseamnă că, în această primăvară, condițiile climatice au favorizat dezvoltarea făinării.

În următoarea perioadă așteptăm ploi, temperaturile vor fi în scădere, iar făinarea va crea probleme în special la hibrizii sensibili.

Primele raportări despre prezența făinării pe silicve sunt din zona Moșnița (Timiș). Fotografiile din acest material sunt realizate la data de 16 mai 2024  de către un fermier care mi-a permis să le utilizez.

Se cunoaște că, infecțiile severe apar atunci când vremea este umedă (umiditatea relativă între 50 - 95%), iar temperaturile sunt cuprinse între 150 - 200C. Astfel de condiții au fost și în primăvara 2019 în județul Timiș, când făinarea a cuprins toate organele plantei, inclusiv silicvele, producând daune semnificative.

Foto Moșnița 16.05.2024

Tratamentele chimice se impun, mai ales atunci când fungul infectează silicvele formate. În primăverile răcoroase și umede se recomandă efectuarea unui tratament preventiv.

Fungicidele omologate în România pentru combaterea acestui patogen sunt pe bază de: Tebuconazol; Protioconazol (se aplică preventiv, la apariția primelor simptome); Boscalid + metconazol (după APLICAȚIA PESTICIDE 2.24.2.2).

Respectați dozele, momentele optime de aplicare și timpii de pauză (care sunt destul de mari, între 35 - 56 zile).

Infecțiile pot fi severe atunci când temperaturile sunt cuprinse în intervalul 220-270C, iar umiditatea relativă este scăzută în timpul zilei și ridicată în timpul nopții.

Erysiphe cruciferarum infectează buruienile (gama de plante gazdă este largă), trecând cu ușurință pe plantele cultivate. De aceea, culturile nu trebuie să fie îmburuienate.

Pentru detalii despre patogen (simptome, biologie și combatere) vă rugăm să accesați articolul despre Erysiphe cruciferarum: https://revistafermierului.ro/din-revista/protectia-plantelor/item/6092-fainarea-a-aparut-in-culturile-de-rapita.html

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Maria Cîrjă, Marketing Manager pentru România și Republica Moldova la Corteva Agriscience, a fost onorată cu premiul „Cel mai bun Manager de Marketing din România” la Gala de Excelență în Management organizată de revista Capital.

Evenimentul este dedicat recunoașterii realizărilor managerilor din companiile care activează pe piața românească și care conduc proiecte de succes în toate departamentele relevante, cum ar fi marketingul, vânzările, resursele umane și multe altele. Criteriile de evaluare au fost performanța managerilor, deciziile și acțiunile relevante pentru categoria la care s-au calificat.

„Este o onoare pentru mine să primesc acest premiu prestigios și sunt profund recunoscătoare pentru recunoașterea realizărilor și eforturilor făcute în cadrul Corteva Agriscience pentru promovarea inovației și sustenabilității în agricultură. La un eveniment care a devenit deja o tradiție în lumea afacerilor din România, Gala de Excelență, sunt mândră să mulțumesc echipei Corteva România pentru angajamentul ei și pentru realizarea acestui succes remarcabil. Contribuția noastră la industria agricolă din România este susținută de o viziune și o pasiune comune, iar acest premiu demonstrează o colaborare excelentă în cadrul industriei cu obiectivul de a asigura fermierilor tehnologia necesară pentru a aborda eficient și eficace provocările din câmp”, a declarat Maria Cîrjă.

Cu aproape 25 de ani de experiență, Maria Cîrjă este expertă în domeniul agricol, deținând un doctorat în studii de protecție a culturilor. A absolvit în 1993 și și-a început cariera la Institutul de Cercetare în Legumicultură și Floricultură Vidra, lângă București. După trei ani de activitate academică, și-a continuat călătoria în cadrul unei companii agricole multinaționale ca director tehnic și de dezvoltare, deținând această poziție timp de zece ani. S-a alăturat DuPont Pioneer, una dintre companiile fondatoare a Corteva Agriscience, în 2007 ca manager de produs, și patru ani mai târziu a fost numită director de marketing pentru România și Republica Moldova.

La Corteva, Maria Cîrjă susține excelența companiei în industria agricolă românească și este un promotor al practicilor agricole durabile prin furnizarea de soluții tehnologice performante și genetici avansate. În acest context, poziția de lider al Corteva pe piață este consolidată de rezultatele înregistrate în 2023 pe diverse segmente. De exemplu, conform Kynetec, liderul global în date, analize și informații în agricultură, în categoria semințelor, Corteva ocupă prima poziție pentru porumb, soia și rapiță. Mai mult, în protecția culturilor, compania își menține conducerea cu prima poziție pe piață în erbicide pentru cereale și rapiță, erbicide post-emergente pentru porumb și fungicide pentru viță de vie și cartof. Performanța pe piață a companiei subliniază angajamentul său neclintit față de excelență și inovație, pledând pentru utilizarea semințelor de calitate și a produselor de protecția culturilor pentru a maximiza productivitatea și a îmbunătăți randamentele pentru fermieri.

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Eveniment

Dr. ing. Otilia Cotuna, șef lucrări Facultatea de Agricultură din cadrul USV „Regele Mihai I” din Timișoara - Departamentul de Biologie și Protecția Plantelor, anunță că, în anul 2024, monitorizarea dăunătorilor periculoși ai porumbului (Helicoverpa armigera și Ostrinia nubilalis) continuă într-un nou parteneriat între Universitatea de Științele Vieții „Regele Mihai I” din Timișoara și compania FMC Agro Operational Romania, în cadrul programului Arc farm intelligence.

438094284 122155360514088675 3274176770199902105 n

„Mulțumesc FMC România pentru încrederea acordată, cât și pentru extraordinara colaborare care a început în anul 2020. Continuăm împreună, în aceeași formație, dar în altă locație. Timp de patru ani, monitorizarea dăunătorilor Helicoverpa armigera și Ostrinia nubilalis s-a realizat în parteneriat cu SCDA Lovrin (unde eu am activat cu jumătate de normă până în anul 2023, luna iunie). A fost un parteneriat extraordinar, iar rezultatele obținute pot fi utilizate cu succes pentru stabilirea momentelor optime de combatere a celor doi dăunători. În curând, concluziile desprinse în urma a patru ani de monitorizare le vom aduce în fața dumneavoastră”, a spus dr. ing. Otilia Cotuna.

Prin urmare, al cincilea an de monitorizare continuă la Universitatea de Științele Vieții „Regele Mihai I” din Timișoara. În acest an, capcanele vor fi amplasate în loturile de porumb ale Stațiunii Didactice a USVT către sfârșitul lunii mai.

catalin otilia

„Un nou început, care sper să fie un succes așa cum a fost și în ceilalți ani de parteneriat cu FMC, o companie implicată în cercetarea agricolă românească. Un atu important al acestei companii este faptul că rezultatele obținute în urma monitorizării sunt puse la dispoziția fermierilor în mod gratuit prin intermediul aplicației Arc farm intelligence, care s-a dovedit în timp că este de un real succes”, a adăugat dr. ing. Otilia Cotuna.

În cei patru ani de parteneriat, sistemul de monitorizare a fost perfectat în așa fel încât, rezultatele obținute să se coreleze cu cele din teren. „Multe tipuri de capcane au fost testate în acești ani. În urma testelor au fost selectate tipurile de capcane la care rezultatele au fost foarte bune. La unele modele s-a renunțat deoarece rezultatele nu au fost cele scontate. Le recomand fermierilor să stea aproape de USVT și FMC Agro Operational România în perioada următoare”, a încheiat dr. ing. Otilia Cotuna.

 

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Fungul Puccinia striiformis produce boala numită „rugina galbenă”. Pe fondul climatic actual (vreme umedă și răcoroasă) și a sursei de inocul ridicată din anul trecut, primele infecții produse de Puccinia striiformis sunt evidente în lanurile de grâu, mai ales la soiurile sensibile. Este posibil ca și în acest an să ne confruntăm cu epidemii de rugină galbenă în unele zone din țară? Vom vedea.

În anul 2023, primele infecții au apărut la grâu în ultima decadă a lunii aprilie. Se pare că istoria se repetă. În 2024, în ultima decadă a lunii aprilie observăm primele pustule de rugină galbenă. Asta înseamnă că infecția s-a realizat mai devreme, adică în decada a doua a lunii aprilie 2024. Dacă vremea răcoroasă și umedă se va menține, posibil ca acest patogen să producă pagube importante în producție, așa cum s-a întâmplat și în anul 2023.

De aceea, vă recomandăm să verificați lanurile de grâu și orz, iar acolo unde constatați că PED-ul este depășit interveniți cu tratamente. Pentru gestionarea corectă a patogenului vă punem la dispoziție informații despre biologia, epidemiologia și combaterea acestui patogen periculos.

 

Factorii de risc pentru apariția infecțiilor

 

Riscul de apariție a epidemiilor de rugină galbenă crește când se întrunesc următorii factori:

  • Climatul răcoros;

  • Precipitațile abundente din perioada de vegetație;

  • Soiurile sensibile;

  • Samulastra;

  • Iernile ușoare;

  • Microclimatul umed;

  • Vânturile care bat din nord - vest și sud - vest (pot aduce uredospori de la distanță mai mare) - Martinez - Espinoza, 2008; Popescu, 2005.

Puccinia striiformis, infecție la soiul Miranda (Mănăștur, jud. Arad, 29.04.2024)

Puccinia striiformis infecție la soiul Mirandajpg

În ultima decadă a lunii aprilie 2024, acești factori sunt întruniți, iar patogenul este prezent în unele culturi de cereale din vestul țării, dar și în alte zone din România.

 

Importanța economică a bolii

 

În condițiile climatice ale României, rugina galbenă nu apare în fiecare an, ci doar în anii în care în timpul primăverii se înregistrează temperaturi scăzute (10 - 150C) și cantități mai mari de precipitații. Amintesc anul 2018, când în vestul României rugina galbenă a produs pagube la grâu și triticale. În acel an, infecțiile au apărut după înspicat, iar pagubele nu au fost mari. Nu la fel putem spune despre anul 2023 (la cinci ani de la infecțiile din 2018) când rugina galbenă a produs infecții încă din luna aprilie. Condițiile climatice ale anului 2023 au permis ca rugina să evolueze tot sezonul de vegetație. Pagubele au fost foarte mari, deoarece rugina a ajuns la cariopse, care au rămas mici și șiștave.

Este interesant să ne confruntăm din nou cu rugina galbenă la un an de la epidemiile din anul 2023. Vom vedea dacă vremea umedă și răcoroasă va persista. Dacă temperaturile vor crește peste 200C, infecțiile vor fi stopate.

Pierderi importante apar atunci când infecțiile apar devreme, mai ales la soiurile sensibile. Când boala apare după înspicat, în funcție de condițiile climatice, pagubele pot fi mai mari sau mai mici. Patogenul afectează recoltele și cantitativ și calitativ. Pierderile oscilează între 10% - 70% și excepțional chiar 100% (mai ales la culturile de grâu ecologic și la soiurile sensibile) - Chen, 2005.

Pustule de Puccinia striiformis cu epiderma ruptă (29 aprilie 2024)

Pustule de Puccinia striiformis cu epiderma ruptăjpg

Recunoașterea simptomelor

În anii cu primăveri umede și răcoroase, plantele de grâu, dar și cele de orz, triticale, secară, pot fi infectate pe tot parcursul perioadei de vegetație.

Tabloul simptomatic al ruginii galbene este total diferit de cel al ruginii brune [Eugenia Eliade, 1985; Viorica Iacob et al., 1998; Popescu, 2005].

Puccinia striiformis atacă toate organele plantelor: tulpini, frunze, teci, spiculețe (peduncul, rahis), glume, cariopse, ariste.

Tabloul simptomatic al bolii:

  • Primele infecții apar în luna aprilie și se pot întinde până în luna iunie dacă vremea permite asta;

  • Inițial, pe frunzele infectate se observă semne de boală care constau în dungi clorotice, paralele. În aceste zone clorotice se vor forma pustule specifice de culoare galbenă - deschis și chiar portocalii uneori. Forma pustulelor este dreptunghiulară frecvent, însă se pot observa și pustule eliptice. Pe frunze, pustulele sunt dispuse sub formă de striuri sau dungi între nervuri, în șiruri paralele, cu o preferință pentru partea superioară. La atacuri masive, frunzele se usucă prematur;

  • În cazul atacului la spiculețe, cariopsele vor fi șiștave. După Alexandri et al. (1969), glumele sunt cel mai mult atacate, atât la exterior cât și la interior. De altfel, acestei rugini i se mai spune și „rugina glumelor”. Dispunerea pustulelor este la fel ca la frunze. La sfârșitul perioadei de vegetație se formează teleutopustulele de culoare neagră, de dimensiuni mici, acoperite de epidermă și cu aspect lucios;

  • La tinerele plăntuțe infectate, tabloul simptomatic este și el diferit. Pustulele formate nu sunt delimitate de nervurile frunzei și tind să iasă din această zonă, fiind localizate în toate direcțiile, acoperind uneori frunza în întregime [Chen et al., 2014];

  • La soiurile rezistente simptomele sunt diferite, comparativ cu soiurile sensibile. Uneori nici un simptom nu este vizibil, alteori apar mici pustule înconjurate de o cloroză și chiar necroză. În astfel de situații, producția de uredospori este foarte scăzută.

 

Condiții climatice favorabile infecțiilor

 

Rugina galbenă este o boală a climatului răcoros. Se poate spune că acest fung iese în evidență prin sensibilitatea la temperatură, lumină, umiditate și chiar la poluarea aerului. Intervalul termic preferat de ciupercă este cuprins între 2 - 150C [Zhang et al., 2008].

Uredosporii germinează cel mai bine la temperatura de 70C, considerată optimă. După Schroeder et Hassebrank (1964), uredosporii pot germina la o temperatură minimă de 00C, optimă cuprinsă între 7 - 120C și maximă de 20 - 260C. Din momentul realizării infecției și până la începutul sporulării, temperaturile preferate sunt cuprinse între 13 - 160C, mult mai scăzute comparativ cu alte rugini ale cerealelor. Temperaturile de peste 200C încetinesc dezvoltarea ruginii galbene, deși studiile efectuate în ultimii ani arată că există și tulpini care tolerează și temperaturi mai ridicate. Stubbs (1985) arată că, temperaturile din timpul nopții au un rol esențial în realizarea infecțiilor comparativ cu cele din timpul zilei. Autorul menționează că roua care se formează pe frunze și temperaturile mai scăzute favorizează apariția infecțiilor în timpul nopții. În general, apa liberă (roua și ploaia) și temperaturile scăzute favorizează infecțiile [Chen, 2005].

Umiditatea are un rol foarte important în patogenia acestei rugini, influențând aderarea sporilor la țesuturile plantei, germinarea, realizarea infecțiilor și supraviețuirea. Dacă în timpul dezvoltării fungului intervin temperaturi ridicate și perioade de uscăciune, germinarea uredosporilor este întreruptă [Vallavieille - Pope et al., 1995; Popescu, 2005].

Vântul are importanță deosebită în răspândirea uredosporilor la distanțe mari [Brown & Hovmøller, 2002; Popescu, 2005].

 

Ciclul de viață

 

Fungul supraviețuiește în timpul verii pe miriște, samulastra de grâu, alte poaceae spontane și din gazon. Samulastra de grâu este o punte de trecere a patogenului în noile culturi de grâu în timpul toamnei, mai ales dacă vremea este umedă și răcoroasă [Popescu, 2005]. În toamna 2023, pe tinerele plăntuțe de grâu s-au dezvoltat pustule de rugină galbenă. În timpul verii când temperaturile sunt mai ridicate, rugina galbenă nu este observată dar sursa de inocul există (uredospori). Uredosporii sunt spori care rezistă la secetă, la temperaturile ridicate dint timpul verii cât și la cele scăzute din anotimpul de iarnă [Murray et al., 2005; Popescu, 2005].

În condițiile climatice ale României, ciclul de viață al ruginii galbene este hemiform, adică se formează doar două stadii: uredosporii (de culoare galbenă) și teleutosporii (de culoare maro închis spre negru, bicelulari, considerați spori de supraviețuire peste anotimpul de iarnă). Uredosporii sunt cei care produc infecțiile la cereale în condiții de temperaturi scăzute și umiditate ridicată [Popescu, 2005]. După Chen et al. (2014), uredosporii sunt cei care produc infecții repetate în timpul sezonului de vegetație dacă condițiile climatice sunt favorabile. Când temperaturile cresc, infecțiile se opresc iar pe frunze se formează teleutopustulele cu aspect negricios dispuse în șiruri paralele. Viabilitatea teliosporilor este foarte scăzută (sub 1%) peste anotimpul de iarnă. De aceea în primăvară, infecțiile sunt produse de uredospori care rezistă mult mai bine în condiții de iarnă [Wang & Chen, 2015].

438100133 122155251842088675 2526296872526953673 n

 

Managementul integrat al ruginii galbene

 

Managementul ruginii galbene are ca scop protejarea frunzei stindard, precum și a celei de-a doua frunze. Cele două frunze trebuie să rămână libere de patogen deoarece producția finală depinde de acest lucru.

Măsuri profilactice

Deoarece patogenul este greu de combătut cu fungicide (fenomen de rezistență), măsurile profilactice sunt foarte importante în strategiile de management. Acestea constau în respectarea următoarelor măsuri:

  • Distrugerea samulastrei;

  • Folosirea soiurilor rezistente (mai ales în agricultura ecologică). Pierderile în producție pot fi mai reduse (de la 20% până la 90%). În cazul ruginii galbene, 20% pierdere în producție este totuși mult [Chen, 2014];

  • Sămânța să fie din sursă sigură și certificată;

  • Distrugerea poaceelor spontane;

  • Fertilizare cu azot echilibrată [Popescu, 2005].

Măsuri chimice

Tratamentele chimice sunt cele mai utilizate în combaterea ruginii galbene. Tratamentele trebuie efectuate ținându-se cont de următoarele recomandări:

  • Monitorizarea culturilor pentru a descoperi din timp primele infecții. Tratamentele trebuie efectuate în urma controalelor fitosanitare periodice chiar de la începutul perioadei de vegetație;

  • Aplicarea unui tratament se recomandă când PED - ul este de 25% intensitate de atac și înainte ca boala să devină severă [Popescu, 2005; Chen, 2014];

  • La semănat sămânța utilizată să fie tratată cu fungicide. Pentru tratarea semințelor este omologată substanța triticonazol.

Pentru combaterea ruginii galbene în perioada de vegetație sunt omologate următoarele substanțe: Tebuconazol; Azoxistrobin; Bixafen + spiroxamină + trifloxistrobin; Benzovindiflupir + protioconazol; Bezovindiflupir; Protioconazol; Difenoconazol; Fluxapyroxad; Metconazol; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Piraclostrobin; Mefentrifluconazol + piraclostrobin; Mefentrifluconazol; Fluxapyroxad + mefentrifluconazol; Proquinazid + protioconazol [Aplicația PESTICIDE 2.24.3.1, 2024].

Măsuri biologice

În prezent mulți agenți biologici sunt testați pentru combaterea biologică a ruginii galbene. Dintre agenții biologici testați, amintesc aici:

  • Biopreparate pe bază de Bacillus subtilis (tulpina QST 713) sunt testate pentru controlul ruginii galbene. În urma studiilor s-a constatat că, B. subtillis ține sub control patogenul doar la intensități mici de atac. Când severitatea infecției a fost ridicată și controlul biologic a fost mai scăzut, sub 30%. Tratamentele efectuate imediat după inocularea plantelor cu P. striiformis au dat cele mai bune rezultate. Concluzia studiului a fost că, tratamentele cu biopreparate sunt mai eficiente dacă sunt aplicate preventiv și nu curativ. Pentru obținerea unor rezultate bune în combatere, sunt necesare mai multe tratamente biologice, unul singur nefiind suficient [Reiss et Jørgensen, 2016];

  • Pseudomonas aurantiaca;

  • Brevibacillus spp.;

  • Acinetobacter spp.;

  • Chitosan [Feodorova - Fedotona et al., 2019].

Agenții biologici amintiți nu au dat rezultatele scontate în combatere. Feodorova - Fedotona et al. (2019) arată că, după doi ani de testări, rezultatele obținute nu au fost mulțumitoare.

 

Bibliografie

Alexandri A., M. Olangiu, M. Petrescu, I. Pop, E. Rădulescu, C. Rafailă, V. Severin, 1969. Tratat de fitopatologie agricolă, vol II, Editura Academiei Republicii Socialiste România, 578 p..
Brown, J. K. M., Hovmøller, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (Washington, D.C.), 297: 537 – 541.
Chen X. M., 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat, Canadian Journal of Plant Pathology, 27:3, 314 - 337.
Chen W., Weelings C., Chen X., Kang Z., Liu T., 2014. Wheat stripe (yelow) rust caused by Puccinia striiformis f. sp. tritici, Molecular Plant Pathology, 15 (5), 433 - 446.
Eliade Eugenia, 1985. Fitopatologie, Editat la Tipografia Universității din București, 277 p..
Feodorova - Fedotova L., Bankina B., Strazdina V., 2019. Possibilities for the biological control of yellow rust (Puccinia striiformis f. sp. tritici) in winter wheat in Latvia in 2017 – 2018, Agronomy Research 17(3), 716 – 724.
Iacob Viorica, Ulea E., Puiu I., 1998. Fitopatologie agricolă, Ed. Ion Ionescu de la Brad, Iaşi.
Martinez - Espinoza A., 2008. Disease Management in Wheat. 2008 - 2009 Wheat Production Guide.
Murray G., Wellings C., Simpfender S., Cole C., 2005. Stripe Rust: Understanding the disease in wheat, NSW Department of Primary Industries, 12 p.
Popescu Gheorghe, 2005. Tratat de patologia plantelor, vol. II, Editura Eurobit, Timișoara, 341 p.
Reiss A., Jorgensen L. N., 2016. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtillis strain QST 713), Crop Protection, vol. 93, 1 - 8.
Schröder J., Hassebrauk K., 1964. Undersuchungen uber die Keimung der Uredosporen des Gelbrostes (Puccinia striiformis West). Zentrab. Bakteriol. Parasitenk. Infektionskrank. Hyg. 118, 622 – 657.
Stubbs, R. W. 1985. Stripe rust. In Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control. Edited by A.P. Roelfs and W. R. Bushnell. Academic Press, New York. pp. 61 – 101.
Vallavieille ‐ Pope C., Huber L., Leconte M., Goyeau H., 1995. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedling. Phytopathology, 85, 409 – 415.
Zhang Y. H., Qu Z. P., Zheng W. M., Liu B., Wang X. J., Xue X. D., Xu L. S., Huang L. L., Han Q. M., Zhao J., Kang Z. S., 2008. Stage ‐ specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genomic.
Wang, M. N. and Chen, X. M. 2015. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 99:1500-150.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor
Pagina 1 din 13

newsletter rf

Publicitate

FERMIERULUI ROMANIA AGRIMAXFACTOR BANNER 300x250px

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

03 300px Andermat Mix 2

T7 S 300x250 PX

Banner Agroimpact Viballa 300x250 px

GAL Danubius Ialomita Braila

GAL Napris

Revista