daunatori - REVISTA FERMIERULUI

În luna august am publicat în Revista Fermierului – ediția print (dar și aici: https://revistafermierului.ro/din-revista/cultura-mare/item/5484-soiuri-de-grau-adaptate-pentru-sud-estul-romaniei.html) despre două soiuri de grâu adaptate pentru sud-estul României, grâu pe care l-am văzut în ferma Agromec Vlad Țepeș, județul Călărași. Ne-am întors în câmp, la exploatația administrată de Constantin Mihalache la recoltat, pentru a vedea producțiile date de RGT Borsalino și RGT Accroc, soiuri de grâu ce aparțin companiei franceze RAGT, testate, apoi semănate pe suprafețe mari în ferma călărășeană, care pe anumite suprafețe produce și sămânță, categorie biologică C1.

Am ajuns la Agromec Vlad Țepeș în momentul în care sămânța era însăcuită, pregătită de livrare. Pe Constantin Mihalache l-am găsit optimist, cu toate că, la fel ca toți fermierii, s-a confruntat anul acesta cu condiţii climatice extreme, lipsa precipitaţiilor şi temperaturile crescute având mari repercusiuni asupra culturilor înfiinţate şi în toamna trecută, şi în primăvară. „Noi am înfiinţat în premieră în România un soi de grâu, RGT Borsalino, anumite suprafeţe pentru producerea de sămânţă, categorie biologică C1. Cele două soiuri de grâu despre care eu spun că sunt adaptate pentru sud-estul țării noastre sunt RGT Accroc şi Borsalino. Accroc este un soi de grâu extratimpuriu, care în trecut a mai fost cultivat în România, iar fermierii din Constanţa, Tulcea îl cunosc, pe zonele aride a avut nişte producţii spectaculoase, un soi de grâu aristat, cu pruină, ceea ce-l face rezistent la secetă şi chiar la atacul de dăunători. Şi în condiţii vitrege dă producţii extraordinar de bune. De pildă, noi ne-am bucurat de producţii, avându-l pe un areal extins, între 6,5 tone/ha până la 8 tone/ha, producându-ne mari satisfacţii. Un grâu cu talie scurtă, care rezistă la cădere şi cu calităţi foarte bune pentru morărit şi panificaţie. Ambele soiuri sunt aristate, ceea ce înseamnă că sunt mai rezistente la secetă”, arată Constantin Mihalache.

cm 232 grau mihalache 1

Soiurile de grâu Accroc şi Borsalino au fost însămânțate după data de 5 octombrie 2021. Distanţa între rânduri a fost de 12,5 cm şi s-a folosit o densitate de 340 boabe germinabile pe metru pătrat. Ceea ce a însemnat o cantitate de sămânţă de 150 kg la hectar. „O cantitate mică, care a însemnat un raport sămânţă/producţie foarte bun. A înfrăţit foarte bine, şi-a menţinut fraţii până la recoltare, spicele au fost uniforme şi foarte bine repartizate, nu prea a suferit de secetă şi arşiţă şi la dozele de azot folosite de noi, aproximativ 160 kg substanţă activă la hectar, grâul a rămas practic în picioare, iar recoltatul s-a făcut cu uşurinţă”, menționează fermierul din județul Călărași.

 

Accroc și Borsalino, soiuri extratimpurii cu calități deosebite

 

Constantin Mihalache ne-a însoțit în vizita din ferma Agromec Vlad Țepeș și ne-a oferit detalii despre cele două culturi de grâu care i-au adus satisfacții în acest an agricol dificil.

cm 232 grau mihalache 2

RGT Accroc este un soi extratimpuriu, ceea ce îl face să treacă peste perioada de arşiţă şi secetă din luna mai, cu uşurinţă. „Frunzele acoperite cu pruină, un soi aristat, cu talie scurtă, rezistent la spectrul de boli, inclusiv cel mai rezistent la rugini, galbenă şi brună, şi bine rezistent, tolerant la Fusarium. Calităţi de panificaţie extraordinar de bune, 14,5-15% proteină în condiţiile anului ăstuia, masă hectolitrică foarte bună. Îl recomand cu prisosinţă tuturor fermierilor din zonele aride, secetoase, unde se pot obţine producţii bune şi i-ar scoate din impas în momente precum cele pe care le-am traversat până acum”, precizează fermierul.

De la soiul RGT Borsalino nu a obţinut producţii la fel de mari ca la Accroc, însă rezultatele chiar și așa aduc profit. De reținut că acest soi poate fi cultivat de la sfârşitul perioadei optime până în luna decembrie. Constantin Mihalache îl recomandă fermierilor care seamănă mai târziu, în afara epocii optime. „Înfrățirea a fost extraordinară. Borsalino este un soi umblător, care se poate cultiva, şi recomandarea mea este, pentru că acum am văzut potenţialul lui foarte mare de înfrăţire, că se poate cultiva la sfârşitul perioadei optime până în luna decembrie, deoarece el este poate printre puţinele soiuri din România care nu are nevoie de vernalizare, de perioada de frig pentru a stimula primordiile florale. După cum ştiţi, grâul secretă un hormon nedetectat până acum, dar se bănuieşte vernalină, care-l face să stimuleze procesul de înflorire, de a asigura producţiile cât mai multe şi constante. Acest soi de grâu îl recomand fermierilor care seamănă mai târziu, în afara epocii optime, care din diferite cauze nu pot pregăti terenul, întârzie mai mult la semănat sau îşi doresc să mărească suprafeţele de semănat. La fel, este un grâu aristat, principala calitate a lui este faptul că înfrăţeşte foarte puternic, producţii foarte bune, la fel calităţi deosebite pentru morărit şi panificaţie. Un grâu cu talie scurtă, extratimpuriu, se recoltează cu două-trei zile, chiar mai devreme decât toate soiurile de grâu din România, ceea ce-l face un competitor important chiar şi pentru cultura de orz, care ne aduce primii bani în buzunar fermierilor din România.”

 

Potenţial genetic cuprins între 10-12 tone/ha

 

Ambele soiuri se bucură de genetică extraordinar de bună, punctează Constantin Mihalache, fiind introduse în România de RAGT Franţa. „O genetică extraordinară pe culturile de păioase. Ambele soiuri sunt rezistente la rugini, la septoria şi tolerante cu fusarium, ceea ce face ca Accroc și Borsalino să devină o opţiune serioasă pentru fermieri, acolo unde impactul acestor boli este foarte mare. De asemenea, îl recomand tuturor fermierilor, pentru că ambele sunt soiuri extratimpurii, cu înflorire timpurie, ceea ce face ca înflorirea să fie devreme şi să treacă uşor peste perioada de arşiţă şi secetă despre care ştim bine că se manifestă în țara noastră în a doua şi a treia decadă a lunii mai. Sunt soiuri cu talie scurtă, suportă foarte bine dozele superioare de azot, până la 160 kg de substanţă activă la hectar, potenţialul genetic este cuprins între 10 și 12 tone la hectar, foarte rezistente la o serie de boli şi, fiind soiuri cu talie scurtă, rezistente la cădere.”

cm 232 grau mihalache 5

Agromec Vlad Țepeș se află la început de drum în producerea de sămânță, însă fermieri din întreaga țară caută să cumpere sămânță de la societatea din județul Călărași, având încredere și văzând lucrurile bune care se întâmplă aici de ani buni. „Le recomand cu tărie să cultive aceste două soiuri, Accroc și Borsalino, pentru că aşteptările nu le vor fi înşelate”, a conchis fermierul Constantin Mihalache.

 

Articol scris de: MIHAELA PREVENDA & ȘTEFAN RANCU

Publicat în Revista Fermierului, ediția print – octombrie 2022
Abonamente, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html
Publicat în Cultura mare
Duminică, 23 Octombrie 2022 14:44

Molia verzei, prezentă în culturile de rapiță

În urma controlului fitosanitar efectuat în săptămâna 17 – 23 octombrie 2022 în culturile de rapiță de pe teritoriul Stațiunii de Cercetare – Dezvoltare Agricolă (SCDA) Lovrin am constatat prezența larvelor și adulților de Plutella xylostella în număr mare, aspect care ne îngrijorează. Chiar dacă acest dăunător este considerat secundar la rapiță, în anii favorabili poate produce daune semnificative.

rapita roasa

Pe lângă larvele și fluturii de Plutella, pe rapiță se hrănesc masiv și larvele de Helicoverpa armigera. Afidele sunt prezente și ele în toate stadiile de dezvoltare. Fluturii de Helicoverpa armigera, Plutella xylostella, Pieris brassicae și Autographa gamma încă zboară prin culturi. Toamna blândă cu temperaturi ridicate în timpul zilei permite acestor dăunători să se dezvolte în condiții bune.

Helicoverpa armigera pe rapiță, 20 octombrie 2022

Helicoverpa armigera pe rapiță la 20 octombrie 2022

Autographa gamma, 20 octombrie 2022

Autographa gamma la data de 20 octombrie 2022

Plutella xylostella (molia verzei) este considerată un dăunător important al cruciferelor cultivate, mai ales la varză, conopidă, rapiță, muștar etc. Se cunoaște că managementul actual al moliei Plutella xylostella (și nu numai) se bazează în mare măsură pe tratamentele chimice. În cele ce urmează readuc în atenția dumneavoastră aspecte legate de biologia și combaterea integrată a moliei mai sus amintite pentru a vă ajuta în gestionarea ei în următoarea perioadă de timp. Pentru un control mai bun și mai durabil pe termen lung, managementul acestui dăunător trebuie îmbunătățit, în așa fel încât combaterea să nu se bazeze strict pe aplicarea insecticidelor (mai ales la varză, conopidă).

Molia Plutella xylostella (L.) (Lepidoptera: Plutellidae), este unul dintre cei mai serioși dăunători ai Brassicaceaelor cultivate la nivel mondial [Talekar & Shelton, 1993; Sarfraz et al., 2006]. În țara noastră este răspândită în zonele unde se cultivă varză, conopidă, rapiță [Roșca et al., 2011].

Adult de molia verzei care zboară prin culturile de rapiță, 20 octombrie 2022

Adult de molia verzei care zboară prin culturile de rapiță la data de 20 octombrie 2022

 

Aspecte generale despre biologia și ecologia moliei Plutella xylostella

 

În condițiile climatice ale țării noastre prezintă trei generații de an. Insecta poate ajunge chiar la șase generații pe an în zonele din lume unde climatul permite dezvoltarea. În lunile mai - iulie se dezvoltă prima generație, în iulie - august a doua generație, iar generația a treia din august până anul următor [Roșca et al., 2011]. Insecta iernează în stadiul de pupă în cocon pe frunzele atacate. În anul următor, primii adulți vor apărea spre sfârșitul lunii mai.

Ciclul de viață are patru etape sau stadii: adult, ou, larvă, pupă. Durata fiecărui stadiu este condiționată de condițiile climatice (temperatura mai ales). Adulții sunt mici (cam 9 mm lungime) și au culoare predominant maro - cenușiu către ocru. Aripile au culoare variabilă de la ocru la maro, cu pete negre. Când sunt pliate, în partea superioară formează trei sau patru zone în formă de diamant de culoare alb - cenușiu. Din acest motiv i se mai spune „molia diamantată” [Talekar et Shelton, 1993; Golizadeh et al., 2007; Sarnthoy et al., 1989; CABI, 2015]. Adulții au activitate maximă la amurg și în timpul nopții. Dacă intrăm într-un lan de rapiță și atingem plantele, vom observa zborul în zig - zag al adulților.

Larvă de Plutella și rosăturile produse pe frunze de rapiță

Larvă de Plutella și rosăturile produse pe frunze de rapiță

Imediat după apariția adulților, începe împerecherea. La câteva ore după împerechere, femelele încep depunerea pontei. O femelă poate depune 80 - 100 ouă. După unii autori, pot depune până la 200 de ouă pe parcursul a zece zile. Aproximativ 95% din femele încep să depună ouă la câteva ore după împerechere. Ouăle sunt ovale, au culoare gălbuie și aproximativ 0,5 mm. De regulă, sunt depuse mai ales pe partea inferioară a frunzelor (lângă nervuri de obicei) și mai puțin pe cea superioară. În acest fel, ele sunt protejate de lumina directă, de vânt, de ploi [Silva și Furlong, 2012; Talekar și Shelton, 1993; Åsman et al., 2001].

După 3 - 5 zile de incubație (funcție de temperaturi) apar larvele care încep să se hrănească, fiind recunoscute pentru lăcomia lor. În primul stadiu, au un mod de hrănire minier, consumând parenchimul frunzelor. După două - trei zile încep să se hrănească pe partea inferioară a frunzelor, rozând epiderma inferioară și parenchimul, cu excepția epidermei superioare (ferestruire). În următoarele trei stadii, larvele devin foarte lacome consumând frunzișul non - stop, lăsând găuri ovale de diferite dimensiuni în frunze iar aspectul de ferestruire dispare [Talekar și Shelton, 1993; Roșca et al., 2011; Castelo Branco et al., 1997]. Ajunse în stadiul patru, larvele nu mai consumă frunze și intră în stadiul prepupal. Acest stadiu durează între 1 - 3 zile, atunci când temperaturile sunt cuprinse între 10 - 20 grade C. Perioada pupală durează și ea între 3 și 20 de zile, funcție de planta gazdă și temperaturi (10 - 30 grade C). Suma de temperaturi necesară dezvoltării unui ciclu de viață este de aproximativ 260 grade C. Ciclul de viață al unei generații se poate întinde pe 60 - 80 de zile funcție de condițiile de temperatură ale zonei, pornind de la pragul de 7 grade C și o temperatură medie de 10 grade C. Dacă temperaturile sunt mai ridicate, numărul de zile necesare dezvoltării se reduce la jumătate [Golizadeh et al., 2007; CABI, 2015; Liu et al., 2002].

Larvă de Plutella xylostella care se hrănește pe rapiță, 20 octombrie 2022

Larvă de Plutella xylostella care se hrănește pe rapiță la data de 20 octombrie 2022

În zonele foarte calde din lume, această insectă are un ciclu de viață scurt, în jur de 18 zile, iar populația sa poate crește de până la 60 de ori de la o generație la alta [De Bortoli et al., 2011]. Studiile indică că moliile pot rămâne în zbor continuu câteva zile, putând zbura până la 1000 km/zi. Nu se cunoaște încă cum reușesc moliile să supraviețuiască la temperaturi scăzute și la altitudine mare [Talekar & Shelton, 1993].

 

Cum și când combatem acest dăunător

 

Este foarte important să monitorizăm insecta. Pentru asta, cercetarea pe teren este necesară. Capcanele cu feromoni pot fi utilizate pentru monitorizarea moliei și stabilirea curbelor de zbor. Curbele de zbor pot fi un bun indicator pentru alegerea momentului optim de combatere. Studiile efectuate în India arată că monitorizarea populațiilor de Plutela xylostella cu ajutorul capcanelor feromonale au dat rezultate foarte bune în combatere. Datele obținute au putut indica un moment optim de aplicare al tratamentelor, în așa fel încât populațiile au fost drastic diminuate și daunele reduse. Pe lângă asta, numărul de tratamente a fost și el redus [Venkata et al., 2001].

În același timp, câmpurile ar trebui verificate de cel puțin două ori pe săptămână. Controlul trebuie să se facă în mai multe puncte din lan sau cultură (cel puțin cinci). Se vor verifica în fiecare punct măcar 0,1 m2. Pe această suprafață se vor număra larvele.

Funcție de planta gazdă, fenologie, există mai multe praguri de dăunare calculate. După Tanskii (1981), la varză, PED-ul este de 8 - 10 larve/plantă. Momentele de observație: rozeta de frunze, începutul formării căpățânii. După „Canola Encyclopedia” (2015), pragul economic de dăunare la care trebuie efectuat tratamentul este de 20 - 30 larve/m2.

Ferestruiri produse de Plutella xylostella

Ferestruiri produse de Plutella xylostella

Combaterea moliei Plutella xylostella se poate face printr-o serie de măsuri, agrofitotehnice, chimice și biologice. Dintre măsurile agrofitotehnice, amintesc: distrugerea buruienilor (a cruciferelor spontane mai ales), arăturile adânci pentru îngroparea resturilor vegetale, irigarea prin aspersiune (stresează adulții, larvele cad de pe frunze), cultivarea soiurilor tolerante [Roșca et al., 2011]. Există zone în lume unde se practică intercroping-ul (cu usturoi, salată verde) și înființarea de culturi capcană pe marginea culturilor [Shelton, Badenes-Perez, 2006].

 

Măsuri chimice de combatere

 

Din păcate, în cadrul sistemului de combatere integrată, măsurile chimice ocupă un loc fruntaș. În primul stadiu, larvele nu pot fi omorâte datorită modului minier de hrănire. Din stadiul doi ele pot fi combătute chimic.

La varză, pentru combaterea moliei Plutella xylostella sunt omologate în România câteva insecticide: ciantraniliprol, clorantraniliprol, cipermetrin, gama – cihalotrin, emamectin benzoat, spinosad, clorantraniliprol + lambda-cihalotrin. Pentru rapiță nu sunt omologate produse, dar cele omologate pentru alți dăunători omoară și populațiile de Plutella [după aplicația Pesticide 2.22.10.1, 2022].

Dintre pesticidele recomandate, grupul chimic al piretroizilor este cel mai important și mai utilizat pentru controlul moliei P. xylostella. Controlul chimic al P. xylostella se recomandă atunci când densitatea larvelor depășește pragul economic, care variază în raport cu stadiul de creștere al culturii și condițiile de mediu [Micic, 2005; Miles, 2002]. Utilizarea de multe ori incorectă a acestor substanțe chimice a crescut rezistența moliei verzei [Carazo et al., 1999; Castelo Branco et al., 2001]. Multe studii arată că populațiile de P. xylostella sunt considerate foarte predispuse la dezvoltarea rezistenței la insecticide. De altfel, P. xylostella a fost primul dăunător raportat a fi rezistent la dicloro-difenil-triclor-etan (DDT), la numai 3 ani de la începutul utilizării sale [Ankersmit, 1953]. Mai târziu a dezvoltat rezistență semnificativă la aproape orice insecticid aplicat, inclusiv la substanțe chimice noi [Sarfraz & Keddie, 2005; Ridland & Endesby, 2011].

Gestionarea populației de P. xylostella folosind metode de control chimice poate fi o strategie foarte interesantă dacă este bine utilizată, din cauza numărului mare de grupe chimice cu substanțe active diferite, care permit alternarea substanțelor chimice, prevenind astfel apariția fenomenului de rezistență. De asemenea, se recomandă ca tratamentele chimice să fie alternate și cu alte metode de control (biologice de exemplu) pentru a reduce numărul de aplicații de pesticide și pentru a îmbunătăți astfel calitatea produsului vegetal.

311864241 650067176618172 1399326978960078603 n

Un aspect foarte important în alegerea produsului chimic este selectivitatea acestuia, deoarece multe substanțe chimice au o selectivitate ridicată pentru gazdă, dar nu și pentru agenții de control biologic, care contribuie la menținerea populațiilor considerate benefice pentru managementul integrat al P. Xylostella.

 

Combaterea biologică, de interes în viitor

 

În combaterea biologică a P. xylostella pot fi utilizate preparate pe bază de Bacillus thuringiensis subsp. Kurstaki (tulpina PB 34). Managementul integrat al P. xylostella bazat pe controlul biologic cu bacteria entomopatogenă B. thuringiensis este o metodă importantă pentru reducerea densității populației acestui dăunător în culturile de Brassicaceae. Cu toate acestea, utilizarea acestui entomopatogen trebuie să fie bine planificată, deoarece această molie se află printre primele insecte care au dezvoltat rezistență la insecticidul biologic pe bază de Bacillus thuringiensis [Kirsch & Schmutlerer, 1988; Tabashnik, 1990].

De interes sunt și fungii entomopatogeni Metarhizium anisopliae și Beauveria bassiana pentru controlul P. xylostella. Beauveria bassiana este disponibilă ca produs pe piață pentru gestionarea insectelor dăunătoare. Utilizată în combaterea moliei verzei, a redus cu succes populațiile și s-a constatat că se răspândește eficient de la moliile contaminate la cele sănătoase [Sarfraz et al., 2005].

În mod natural, toate stadiile moliei Plutella xylostella sunt atacate de numeroși parazitoizi și prădători, parazitoizii fiind cei mai studiați. Peste 90 de specii parazitoide atacă molia diamantată [Goodwin, 1979]. Paraziții de ouă aparținând genurilor polifage Trichogramma contribuie puțin la controlul natural, necesitând eliberări frecvente de viespi în câmp. Paraziții de larve sunt cei mai predominanți și în același timp cei mai eficienți. De exemplu, în Brazilia au fost observate șapte specii de parazitoizi într-o populație de P. xylostella la culturile de varză, cele mai frecvente fiind două specii: Diadegma liontiniae (Brethes) (Hymenoptera: Ichneumonidae) și Apanteles piceotrichosus (Blanchard) (Hymenoptera: Braconidae). Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) și Actia sp., mai numeroase în trecut, au devenit parazitoizi minori.

Parazitoizii din genul Trichogramma se numără printre agenții entomofagi care au fost mult studiați pentru P. xylostella. Specia T. pretiosum Riley (Hymenoptera: Trichogrammatidae), tulpina Tp8, poate parazita aproximativ 15 ouă de P. xylostella în prima sau a doua generație atunci când sunt crescute în această gazdă în condiții de laborator, cu apariție de 100% și 10 până la 11 zile pentru apariția adulților [Volpe et al., 2006]. Mai mult, modalitatea optimă de a crește în masă acest parasitoid în laborator este de a folosi ouă lipite pe cartoane de culoare albastră, verde sau albă [Magalhaes et al., 2012].

Dintre prădătorii moliei Plutella xylostella, de interes este P. nigrispinus, care are un potențial mare de utilizare în controlul acesteia. P. nigrispinus a fost raportat că se hrănește cu P. xylostella în culturile de crucifere, consumând în medie 11 larve sau 5 - 6 pupe în 24 de ore [Silva - Torres et al., 2010; Vacari et al., 2012]. Despre adulții de Orius insidiosus (Say) (Hemiptera: Anthocoridae) există date care arată că aceștia pot consuma în jur de 6 ouă de Plutella xylostella în 24 de ore [Brito et al., 2009].

Numeroase studii se fac astăzi despre utilizarea nematozilor entomopatogeni în combaterea moliei verzei Plutella xylostella. Cercetările efectuate până acum arată că nematozii Steinernema carpocapsae pot fi utilizați în combatere mai ales atunci când insecticidele se dovedesc ineficiente [Schroer et al., 2005]. Pentru că molia depune ouăle pe suprafața inferioară a frunzelor iar larvele tinere se hrănesc în aceeași zonă, soluția cu nematozi trebuie direcționată cât se poate de mult acolo. Eficacitatea tratamentului depinde foarte mult de tehnica de pulverizare [Brusselman et al., 2012].

Insecticidele de origine vegetală sunt, de asemenea, un grup foarte important pentru gestionarea populației acestui dăunător. Dintre acestea, extractul de neem (Azadirachta indica) a prezentat rezultate semnificative în controlul P. xylostella [Myron et al., 2012].

Metodele amintite în acest material, utilizate corect și conștient, îmbinate armonios, pot duce la obținerea unor produse vegetale de o bună calitate, lipsite de reziduuri de pesticide.

311761819 650065986618291 8897681481655123811 n

 

Bibliografie

Ankersmit G. W., 1953, DDT resistance in Plutella maculipennis (Curt.) Lepidoptera in Java. Bulletin of Entomological Research 1953;44: 421–425.
Åsman K., Ekbom B., Rämert B., 2001, Effect of Intercropping on Oviposition and Emigration Behavior of the Leek Moth (Lepidoptera: Acrolepiidae) and the Diamondback Moth (Lepidoptera: Plutellidae). Environmental. Entomology 30(2): 288-294.
Brito J. P., Vacari A. M., Thuler R. T., De Bortoli S. A., 2009, Aspectos biológicos de Orius insidiosus (Say, 1832) predando ovos de Plutella xylostella (L., 1758) e Anagasta kuehniella (Zeller, 1879). Arquivos do Instituto Biológico 2009; 76(4): 627–633.
Brusselman E., Beck B., Pollet S., Temmerman F., Spanoghe P., Moens M., Nuyttens D., 2012, Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science 2012;68(3): 444–453.
Carazo E. R., Cartin V. M. L. , Monge A. V., Lobo J. A. S., Araya L. R., 1999, Resistencia de Plutella xylostella a deltametrina, metamidofós y cartap em Costa Rica. Manejo Integrado de Plagas 1999; 53: 52–57.
Castelo Branco M., França F. H., Medeiros M. A., Leal J. G. T., 2001, Uso de inseticidas para o controle da traça-do-tomateiro e da traça-das-crucíferas: um estudo de caso. Horticultura Brasileira 2001; 19(1): 60–63.
Castelo Branco M., França F. H., Villas Boas G. L., 1997, Traça-das-crucíferas (Plutella xylostella). Brasília: Embrapa Hortaliças; 1997. 4p.
CABI. 2015. Plutella xylostella. CABI.org, Invasive Species Compendium. [http://www.cabi.org/isc/datasheet/42318].
Canola Encyclopedia. Diamondback Moth. Canola Council of Canada, n.d.: [http://www.canolacouncil.org/can.../insects/diamondbackmoth/].
De Bortoli S. A., Vacari A. M., Goulart R. M., Santos R. F., Volpe H. X. L., Ferraudo A. S., 2011, Capacidade reprodutiva e preferência da traça-das-crucíferas para diferentes brassicáceas. Horticultura Brasileira 2011; 29(2): 187–192.
Gurr G. M., Wratten S. D., 2000, Measures of success in biological control. Dordrecht: Kluwer Academic Publishers; 2000, p 430.
Golizadeh A., Karim K., Yaghoub F., Habib A., 2007, Temperature-dependent Development of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. Insect Science 14.4: 309-16.
Goodwin S., 1979, Changes in the numbers in the parasitoid complex associated with the diamondback moth, Plutella xylostella (L.) (Lepidoptera) in Victoria. Australian Journal of Zoology 1979; 27(6): 981–989.
Henegar Monika et al., 2019 - Codexul produselor de protecție a plantelor omologate pentru utilizare în România, Editura Agroprint, Timișoara, 426 p.
Kirsch K., Schmutlerer H., 1988, Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 1988;105(1-5): 249–255.
Liu S.-S., Chen F.-Z., Zalucki M. P., 2002, Development and survival of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), at constant and alternating temperatures. Environmental Entomology 31: 1-12.
Magalhães G. O., Goulart R. M., Vacari A. M., De Bortoli S. A., 2012, Parasitismo de Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) em diferentes hospedeiros e cores de cartelas. Arquivos do Instituto Biológico 2012; 79(1): 55–90.
Myron P. Zalucki, Asad Shabbir, Rehan Silva, David Adamson, Liu ShuSheng, and Michael J. Furlong, 2012, Estimating the Economic Cost of One of the World's Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long is a Piece of String?, Journal of Economic Entomology, 105(4):1115-1129.
Miles M., 2002, Insect Pest Management II – Etiella, False Wireworm and Diamondback Moth. GRDC Research updates. http://www.grdc.com.au, 2002.
Micic S., 2005, Chemical Control of Insect and Allied Pests of Canola. Farmnote No. 1/2005. Department of Agriculture, South Perth, Western Australia, Australia; 2005.
Ridland P. M., Endersby N. M., 2011, Some Australian populations of diamondback moth, Plutella xylostella (L.) show reduced susceptibility to fipronil. In: Srinivasan R., Shelton A. M., Collins H. L. (eds.) Sixth international workshop on management of the diamondback moth and other crucifer insect pests. Nakhon Pathom, Thailand; 2011. P 21–25.
Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011 - Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;
Sarfraz M., Dosdall L. M., Keddie B. A., 2006, Diamondback moth-host plant interactions: implications for pest management. Crop Protection 2006; 25(7): 625–639.
Sarfraz M., Keddie B. A., 2005, Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Applied Entomology 2005; 129(3): 149–157.
Silva - Torres C. S. A., Pontes I. V. A. F., Torres J. B., Barros R., 2010, New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotropical Entomology 2010; 39(5): 835–838.
Shelton A. M., Badenes-Perez E. 2006, Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51: 285–308.
Schroer S., Sulistyanto D., Ehlers R. U., 2005, Control of Plutella xylostella using polymer-fomulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields. Journal of Applied Entomology 2005; 129(4): 198–204.
Talekar N. S., Shelton A. M., 1993, Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 1993; 38(1): 275–301.
Tabashnik B. E., Cushing N. L., Finson N., Johnson M. W., 1990, Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 1990; 83(5): 1671–1676.
Vacari A. M., De Bortoli S. A., Torres J. B., 2012, Relation between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 2012; 145(1): 30–37.
van Lenteren J., Godfray H. C. J., 2005, Europen in science in the Enlightenment and the discovery of the insect parasitoid life cycle in The Netherlands and Great Britain. Biological Control 2005; 32(1): 12–24.
van Lenteren, J., 2012, The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012; 57(1): 1–20.
Venkata G., Reddy P., Guerrero A., 2001, Optimum Timing of Insecticide Applications against Diamondback MothPlutella Xylostella in Cole Crops Using Threshold Catches in Sex Pheromone Traps. Pest Management Science 57.1: 90-94.
Volpe H. X. L., De Bortoli A. S., Thuler R. T., Viana C. L. T. P., Goulart R. M., 2006,  Avaliação de características biológicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) criado em três hospedeiros. Arquivos do Instituto Biológico 2006; 73(3): 311–315.
Waage J. K., Greathead D. J., 1988, Biological Control: challenges and opportunities. Philosophical Transactions of the Royal Society of London 1988; 318 (1189): 111–128.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Recolta de porumb din acest an este parțial și chiar total compromisă, în funcție de zona de cultură. Seceta cumplită din timpul verii a contribuit masiv la acest dezastru.

La Stațiunea de Cercetare – Dezvoltare Agricolă (SCDA) Lovrin, până în acest moment producția se învârte în jurul a 3.000 kg/ha. Așadar, producții foarte scăzute sau chiar deloc (porumbul a fost întors în unele zone). După ce că sunt producții foarte mici, constatăm că și calitatea recoltei lasă mult de dorit din cauza atacului dăunătorilor specifici (Ostrinia nubilalis și Helicoverpa armigera) și a patogenilor micotoxigeni (Fusarium verticillioides și Aspergillus flavus și/sau A. parasiticus).

Am început evaluarea atacului de Ostrinia nubilalis la porumb, dar și a fungilor prezenți pe știuleți. Ce am constatat? O frecvență ridicată de știuleți cu micelii de Aspergillus flavus, dar și Fusarium verticillioides. Dacă în alți ani frecvența știuleților cu Fusarium era mai ridicată decât cei cu Aspergillus flavus, în acest an balanța înclină în favoarea fungului Aspergillus flavus.

porumb 1

Cu privire la intensitatea atacului la știuleți, am constatat că este mai ridicată decât în alți ani și asta ar trebui să ne îngrijoreze. La finalul evaluării voi reveni cu rezultate concrete. Până atunci, vă pot spune că plantele de porumb din loturile experimentale sunt deja frânte din cauza atacului larvelor de Ostrinia nubilalis, iar primele analize efectuate arată că în tulpini sunt larve multe, de la 2 până la 9 larve într-o tulpină. A doua generație de Ostrinia nubilalis a făcut prăpăd la porumbul din lotul experimental, unde nu am efectuat nici un tratament. Helicoverpa armigera s-a hrănit intens pe știuleți, provocând multe leziuni pe care s-au instalat cu ușurință fungii micotoxigeni amintiți mai sus. Pe lângă cei doi fungi, putem vedea micelii de Penicillium sp. și Aspergillus niger.

În cele ce urmează, aduc în atenția dumneavoastră fungul micotoxigen Aspergillus flavus, producător major de micotoxine numite aflatoxine.

porumb 2

 

Aspergillus flavus, producător major de aflatoxine la porumb

 

Se cunoaște despre Aspergillus flavus că este un patogen/saprofit oportunist care se dezvoltă în condiţii tropicale şi subtropicale (sunt preferate). Chiar dacă preferă condiţiile tropicale, Aspergillus flavus este raportat peste tot în lume cu menţiunea că predomină în solurile tropicale. Este considerat producător major de aflatoxine care sunt puternic carcinogene pentru oameni și animale (Maren, 2007].

Aspergillus flavus produce mucegai galben – verzui la culturile agricole importante, cum sunt: cerealele (porumbul, grâul), seminţe de leguminoase (alune de pământ, mazăre, năut), nucile braziliene, seminţele de bumbac, soia, orezul, sorgul. Poate apărea şi în turtele, făina şi uleiurile vegetale care nu sunt bine păstrate şi condiţionate, în fructele uscate, nuca de cocos şi chiar în condimente. De asemenea, ciuperca se poate instala pe multe tipuri de materie organică (nutreţuri, produse alimentare şi furaje).

porumb 5

 

Recunoașterea atacului în lanurile de porumb

 

La porumb, fungul Aspergillus flavus se recunoaște după miceliul de culoare galben – verzuie sau galben – maronie de la suprafaţa boabelor sau între ele. De regulă, fungul se instalează pe mătasea porumbului în momentul în care aceasta are culoarea galben – maronie şi este umedă, dar şi pe boabele din vârful ştiuletelui atacate de insecte şi păsări [Robertson, 2005]. Pe cariopsele de porumb apar micelii de culoare verde până la galben. Pe măsură ce fungul se dezvoltă, miceliile capătă culoarea verde închis până la maro. Aproape întotdeauna simptomele apar la vârful ştiuletelui şi adesea afectează doar câteva boabe sau zone mici ale vârfului. În anii favorabili (cum este și anul 2022) fungul poate cuprinde zone mai mari de la suprafața știuletelui, iar miceliile pot fi observate și în zona de mijloc și de la baza știuletelui. Când larvele de Helicoverpa armigera și Ostrinia nubilalis se hrănesc pe boabe, se observă că pe zonele lezate se instalează și Aspergillus flavus cu ușurință.

porumb 3

 

Condițiile în care se instalează Aspergillus flavus la porumb

 

Aspergillus flavus și/sau A. parasiticus se instalează în anii secetoşi, deoarece se dezvoltă foarte bine atunci când vremea este călduroasă în timpul nopţii şi secetoasă în timpul zilei. Grindina, seceta, îngheţul timpuriu şi rănile cauzate de insecte favorizează infecţia. La temperaturi peste 30oC, porumbul începe să sufere, creându-se astfel condiţii optime pentru contaminarea cu aflatoxine.

Condiţiile favorabile creşterii ciupercii (temperaturi ridicate, umiditate scăzută) nu sunt favorabile pentru alţi agenţi patogeni, ceea ce este un avantaj pentru ciupercă [Bhatnagar et al., 2000]. Factorii favorizanţi sunt: temperaturile cuprinse între 26 – 370C, canicula şi seceta din perioada de creştere a porumbului (mai ales dacă intervine în timpul polenizării şi a maturării boabelor), deficienţa de azot şi ştiuleţii atacaţi de insecte. Pe lângă asta, grindina, furtunile şi îngheţul timpuriu produc crăparea boabelor şi predispun porumbul la infecţia cu această ciupercă [Koenning et Payne, 1999].

Insectele au importanță deosebită în epidemiologia acestui fung micotoxigen. Infecţiile primare sunt realizate de conidiile produse de miceliu, dar şi de scleroţii din sol. Sclerotul ar putea reprezenta sursa principală de inocul din timpul iernii, în agroecosistemele cerealelor [Wicklow et al., 1982]. Infecţiile secundare sunt produse de conidii când condiţiile de mediu sunt favorabile pentru dezvoltarea bolii [Scheidegger et Payne, 2003].

Forma saprofită a fungului este importantă în ciclul de viaţă. Ţesuturile infectate ale plantelor (boabele de porumb, ştiuleţi, frunze), care rămân pe sol până în primăvara următoare, constituie sursa principală de inocul pentru următorul ciclu de viaţă. Lucrările minimale ale solului favorizează ciclul de viață al fungului.

Despre Aspergillus flavus se știe că îşi petrece majoritatea ciclului de viaţă în sol, asemenea unui saprofit. Producerea de conidii din scleroţi poate fi anihilată prin îngroparea resturilor vegetale în sol, însă s-a constatat că scleroţii rămân viabili chiar şi după un an de la îngropare [Wicklow et al., 1993].

 

Contaminarea cu aflatoxine a porumbului

 

Aflatoxinele (AF) sunt un grup de micotoxine mutagene, teratogene, și imunosupresoare care includ cele mai multe aflatoxine studiate pe scară largă B1 (AFB1), B2 (AFB2), G1 (AFG1) şi G2 (AFG2). AFB1 este considerat cel mai cancerigen compus produs în mod natural. Aceste micotoxine sunt produse ca metaboliți secundari în mare parte de fungul Aspergillus flavus atunci când crește pe produse vegetale și alimentare. Aflatoxinele sunt suspectate a fi implicate în cancerul de ficat uman, la doze ridicate. Se presupune că sunt responsabile şi de hemoragii ale intestinelor şi rinichilor [Hawk, 2008].

Aflatoxicoze la om au fost raportate foarte des în țările afro-asiatice, A. flavus fiind considerat, după A. fumigatus, a doua cauză a aspergilozei la oameni. Numeroase studii arată că aflatoxinele au fost implicate în carcinomul hepatocelular, hepatita acută, sindromul Reye, ciroză la copii subnutriți (Saleemullah et al., 2006). Expunerea la doze mari de aflatoxine (mai mari de 6.000 mg), poate cauza toxicitate acută cu efecte letale, iar expunerea la doze mici pe perioade prelungite de timp este cancerigenă (atacă ficatul). Toleranţa la aflatoxine este ridicată la adulţii umani. În cazurile de otrăvire acută relatate, copii sunt cei care mor [Williams et al., 2004].

porumb 4

Cercetările au scos în evidenţă că la vitele care au fost hrănite cu furaj contaminat cu aflatoxina B1 s-a regăsit în lapte aflatoxina M1 (metabolitul aflatoxinei B1). Prezenţa aflatoxinei M1 în lapte constituie o problemă importantă pentru sănătatea publică, dat fiind consumul frecvent de lapte şi produse din lapte de către copii sub 7 ani. Pentru aflatoxina M1 care se regăseşte în lapte, limita permisă este de 0,5 ppb [Koenning et Payne, 1999].

Toxicitatea acută a aflatoxinelor a fost demonstrată atât la animale, cât şi la oameni.

Riscul contaminării este mult mai ridicat la porumbul mucegăit în proporţie mare decât la cel mai puţin mucegăit. Aflatoxinele sunt stabile în condiţii de depozitare, manipulare şi chiar procesare a seminţelor sau a furajelor. De asemenea, sunt stabile termic, rezistă la temperaturi ridicate şi la temperaturi de fierbere.

Aspergillus flavus nu este asociat cu reducerea producţiilor ci cu reducerea calităţii [Duncan et Hyler, 1986]. În anii favorabili infecției, nivelul de aflatoxine din boabe poate fi ridicat. Aflatoxinele se pot forma în boabe pe câmp, dar şi în timpul depozitării.

Concentraţia de aflatoxină produsă în timpul depozitării este influenţată de condiţiile de depozitare. Factorii care concură la contaminarea cu aflatoxine sunt umezeala şi temperatura. Temperaturile optime pentru ca A. flavus să se dezvolte sunt de 260 C – 320 C, iar umiditatea cerealelor să fie de 18 - 18,5%. Dacă umiditatea este mai mică de 13%, ciuperca nu apare, indiferent de temperatură. Pentru creştere sunt necesare temperaturi ridicate.

Creşterea va fi încetinită la temperaturi de 4 – 100C şi rapidă la 26 – 320C. Important de reţinut este că, porumbul bolnav şi depozitat se va deteriora rapid chiar dacă umiditatea şi temperatura sunt scăzute, spre deosebire de cel sănătos sau liber de Aspergillus flavus [Malvick, 2007; Wrather et Sweets, 2008]. De asemenea, concentraţia aflatoxinelor nu scade niciodată în timpul depozitării. Eventual poate să crească sau să rămână la acelaşi nivel.

 

Putem preveni instalarea fungului la porumb?

 

Foarte dificil atunci când condițiile climatice sunt favorabile infecțiilor. Totuși ce putem face? Putem verifica culturile pentru a depista la timp infecțiile. O primă verificare ar trebui realizată în perioada de creștere a porumbului. Cu câteva săptămâni înainte de recoltare mai trebuie făcut un control. Dacă constatăm că avem infecții este bine să fim foarte atenți la insectele care au un rol important în diseminarea fungului prin modul lor de hrănire (Ostrinia nubilalis, Helicoverpa armigera, Diabrotica virgifera virgifera). Tratamentele pentru combaterea acestor dăunători ar trebui realizate la momentele optime stabilite în urma monitorizării atente cu ajutorul capcanelor.

Ce mai putem face? Să folosim la semănat hibrizi de porumb adaptaţi zonei unde se doreşte cultivarea lor. Fertilizarea să se facă în mod echilibrat iar data semănatului să fie respectată şi să corespundă zonei. În caz de secetă este necesară irigarea culturilor, pentru a elimina stresul produs de caniculă (mai ales la apariţia mătăsii şi în perioada de maturare).

La recoltat, combina trebuie reglată în aşa fel încât numărul de boabe sparte să fie minim. După recoltat, porumbul trebuie păstrat la umiditatea de 16 – 17%. Dacă este mucegăit, trebuie uscat rapid ca să ajungă la umiditatea de 15% şi chiar mai puţin. Porumbul destinat depozitării pe o perioadă lungă de timp trebuie să fie uscat până la 13% umiditate. Porumbul mucegăit nu trebuie depozitat perioade lungi de timp, pentru a se evita formarea unor concentraţii mari de micotoxine.

porumb 6

Pe lângă măsurile enumerate, controlul dăunătorilor de depozit și modul de păstrare al porumbului sunt foarte importante. În perioada de iarnă, după uscare, porumbul trebuie păstrat la 2 – 50 C. Primăvara, temperatura trebuie să fie de 10 – 160 C. Este indicată aerisirea depozitelor pentru menţinerea temperaturii de păstrare. Temperatura este unul din cei mai importanţi factori în prevenirea dezvoltării mucegaiurilor şi a acumulării toxinelor, după umiditate. Depozitele trebuie verificate la două săptămâni, cu privire la temperatură, umiditate şi prezenţa mucegaiurilor.

Pentru a reduce riscul apariției mucegaiurilor în depozit poate fi utilizat acidul propionic, însă acesta nu elimină mucegaiul şi micotoxinele deja prezente. Utilizarea produselor de acest tip implică riscuri şi poate duce la restricţionarea utilizării porumbului.[Wrather et Sweets, 2008; Cotuna et Popescu, 2009].

 

Bibliografie

Bennett J. W., Klich M., 2004 – Micotoxins. Clin Microbial. Rev. 2003; 16 (3): 497 – 516.
Bhatnagar D., Cleveland T. E., Payne G. A., 2000 – In: Robinson R. K.. Encyclopedia of Food Microbiology, 72 – 79, Academic Press, London.
Cotuna Otilia, Gheorghe Popescu, 2009 - Securitatea și calitatea produselor vegetale, siguranța vieții, Editura Mirton, Timișoara, 327 p.;
Diener U. L., Cole R. J., Sanders T. H., Payne G. A., Lee S. L., Klich M. L., 1987 – Epidemiology of aflatoxin formation by Aspergillus flavus. Ann. Rev. Phytopathol. 25: 249 – 270.
Duncan H. E., Hagler W. M., 1986 – Aflatoxins and other Mycotoxins. NCH – 52 Pest Management – North Carolina State University, 1986; 1 – 111.
Hicks J. K., Shimizu K., Keller N. P., 2002 – Genetics and biosyinthesis of aflatoxins and sterigmatocystin. In: The Mycota XI. Agricultural Applications (Kempken, F., ed), pp. 55 – 69, Springer - Verlag, Berlin.
Koenning S., Payne G., 1999 – Micotoxins in corn, Corn disease Information Note, Plant Pathology Extension, North Carolina State University.
Maren A. Klich, 2007 – Aspergillus flavus: the major producer of aflatoxin, Molecular Plant Pathology, Volume 8 Issue 6, 713 – 722.
Malvick D., 2007 – Hot and dry Summer conditions in Minnesota are favorable for corn ear rots and mycotoxin production. University of Minnesota, disponibil pe: http://www.extension.umn.edu/cropnews/2007/07MNCN42.html.
Robertson Alison, 2005 – Risk of aflatoxin contamination increases with hot and dry growing conditions, IC – 494 (23); 185 – 186.
Saleemullah, Iqbal Z., Khalil I. A., Shah H. U., 2006 - Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food chem., 98: 690 - 703.
Scheidegger K. A., Payne G. A., 2003 – Unlocking the secrets behind secondary metabolism: A review of Aspergillus flavus from pathogenicity to functional genomics. Journal of toxicology; 22 (2 şi 3): 423 – 459.
Wicklow D. T., Horn B. W., Cole R. J., 1982 – Sclerotium production by Aspergillus flavus on corn kernels, Mycologia, vol. 74, No. 3 (May-June), p. 398 – 403, Published by Mycological Society of America.
Wrather Allen, Sweets E. Laura, 2008 – Aflatoxin in corn, disponibil pe: http://aes.missouri.edu/delta/croppest/aflacorn.stm.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Helicoverpa armigera (posibil și alte specii de Heliothine, Helicoverpa zea, de exemplu) nu încetează să ne uimească în această toamnă. Dacă credeam că frigul o va opri din evoluție, ei bine, datele de la capcanele Csalomon spun altceva.

Timp de șapte zile la Lovrin nu s-au putut citi capcanele din cauza ploilor care nu au permis intrarea în câmp. Pe 23 septembrie 2022 capcanele au fost citite și mare ne-a fost mirarea când am văzut numărul mare de capturi (fluturi vii și morți).

Atac de Helicoverpa la cânepă, la 23 septembrie 2022

Atac de Helicoverpa la cânepă 23 septembrie 2022

Numărul de capturi înregistrat la capcanele Csalomon pentru Helicoverpa armigera a fost: 700 capturi la prima capcană (100 capturi/zi) și 465 la a doua (66,4 capturi/zi).

La capcanele pentru capturarea fluturilor de Ostrinia nubilalis, numărul de capturi a fost: la prima capcană - 1 adult de Ostrinia nubilalis, 74 de Helicoverpa (10,6/capturi/zi) și 11 de Autographa gamma (1,6/zi), iar la cea de-a doua - 5 O. nubilalis, 89 Helicoverpa (12,7/zi) și 33 Autographa gamma (4,7/zi).

La capcana automată pentru Helicoverpa au fost notate 4 capturi (fluturi vii), iar la cea de Ostrinia doar un singur fluture.

La capcanele Csalomon pentru Ostrinia, unde feromonul are o selectivitate redusă sunt atrase și alte specii, în special cele menționate mai sus. În acest an, încă avem capturi de Ostrinia nubilalis la capcane, iar fluturașii pot fi observați cum zboară prin ierburile de la marginea culturilor de porumb. Cu greu am reușit să fotografiez unul, deoarece zburau continuu. În aceeași perioadă, în anul 2021, zborul Ostriniei se oprise. Vom vedea incidența atacului la porumb când începem să evaluăm atacul de Ostrinia la cei șapte hibrizi pe care îi avem în câmpul experimental de la SCDA Lovrin. Deocamdată, vizual apreciez că toate plantele din lot sunt atacate. Dacă la prima generație, incidența a fost undeva către 50%, generația a II-a a făcut prăpăd. O să vă țin la curent cu datele din teren la momentul potrivit.

Capturi numeroase la capcanele Csalomon. Aici 700 Helicoverpe (proiect ARC farm intelligence, colaborare SCDA Lovrin și FMC România)

Capturi numeroase la capcanele Csalomon. Aici 700 Helicoverpe proiect ARC farm intelligence colaborare SCDA Lovrin și FMC România

Capturi de Helicoverpa la capcanele Csalomon pentru Ostrinia nubilalis. Se observă și fluturii de Autographa gamma. 23 septembrie 2022

Capturi de Helicoverpa la capcanele Csalomon pentru Ostrinia nubilalis. Se observă și fluturii de Autographa gamma. 23 septembrie 2022

 

Nici un știulete de porumb fără boabe roase de Helicoverpa

 

Cariopse roase de larve de Helicoverpa, la 23 septembrie 2022

Cariopse roase de larve de Helicoverpa la 23 septembrie 2022

Atacul de Helicoverpa la știuleții de porumb este masiv în acest an. Pe rănile produse de larve s-au instalat fungii micotoxigeni Aspergillus flavus și Fusarium sp. Am constatat în câmpul de porumb o frecvență ridicată de știuleți cu mucegai verde produs de Aspergillus flavus. Intensitatea atacului la știuleți este și ea mai ridicată în acest an comparativ cu alți ani, când Fusarium era pe prima poziție. Producție mică de porumb în acest an și parcă nu era suficient asta, iată că și calitatea va fi scăzută. Date mai exacte voi aduce în atenția dumneavoastră imediat după evaluările pe care le vom face în perioada următoare.

Mucegai verde produs de fungul micotoxigen Aspergillus flavus, la 23 septembrie 2022, SCDA Lovrin

Mucegai verde produs de fungul micotoxigen Aspergillus flavus. 23 septembrie 2022 SCDA Lovrin

 

Dar ce fac larvele de Helicoverpa?

 

Larvă de Helicoverpa pe Datura stramonium (ciumăfaie), la 23 septembrie 2022

Larvă de Helicoverpa pe Datura stramonium ciumăfaie la 23 septembrie 2022

Ei bine, se hrănesc nestingherite pe rapiță, varză, cânepă, porumb etc. Am observat că se hrăneau și pe buruienile de la capătul culturii de porumb, în special pe Datura stramonium (ciumăfaie). Această generație de toamnă a Helicoverpei (a IV-a credem noi, conform curbelor de zbor înregistrate în acest an și a gradelor acumulate) se dovedește a fi una extrem de numeroasă și posibil ca rezerva biologică pentru anul următor să fie ridicată (deși nu întotdeauna se întâmplă așa). Vom vedea cum vor evolua condițiile climatice. Dacă toamna va fi blândă este posibil ca Helicoverpa să zboare până târziu în octombrie. Vom urmări la capcane evoluția capturilor până la finalul zborului.

otilia in activitate

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Deși este o cultură profitabilă și o bună premergătoare pentru cerealele de toamnă, rapița este și o cultură „sensibilă” la condițiile climatice din toamnă. Bolile și dăunătorii constituie un alt grup de factori de risc care amenință rapița, față de care trebuie acordată o atenție deosebită.

În portofoliul companiei Corteva Agriscience există o soluție completă pentru controlul celor mai importanți dăunători ai culturii de rapiță, insecticidul INAZUMA®.

Insecticidul Inazuma este compus din două substantațe active: acetamiprid cu acțiune sistemică ce pătrunde rapid în plantă și este protejată de spălare, oferind astfel protecție de lungă durată împotriva insectelor cu aparat bucal de înțepat și supt; cât și lambda cihalotrin-piretroid cu spectru larg de combatere, efect șoc și activitate reziduală.

Ambele componente fac ca insecticidul Inazuma să ofere siguranța atât de mult dorită de cultivatorii de rapiță.

Când vine vorba de controlul dăunatorilor din cultura de rapiță, precum Gândacul lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), Viespea rapiţei (Athalia rosae) și Puricele rapiţei (Psylliodes chrysocephala), Inazuma este solutia perfectă, fiind singura opțiune gata formulată la ora actuală care are o acțiune și sistemică și de contact.

Insecticidul INAZUMA® poate fi aplicat la rapiță, cu o cadență de 14 zile între tratamente și doze adaptate de 0,125-0,2kg/ha pentru Afide, Viespea rapiței și Puricele rapiței. Pentru Gărgărița tulpinilor și Gândacul lucios al rapiței dozele de aplicare sunt cuprinse între 0,15-0,2kg/ha funcție de presiunea de atac.

Se recomandă ca tratamentul de primăvară, împotriva Gândacului lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), să fie făcut în perioada de instalare a dăunătorilor în cultură, în baza urmăririi atente a numărului de pupe dar nu mai târziu de stadiul fenologic: buton verde BBCH 51.

Atenție: Nu se aplică în perioada înfloritului!!!

Articol scris de: ADRIAN IONESCU, Category Marketing Manager Fungicides & Insecticides Corteva Agriscience România & Moldova

Macheta Inazuma A4

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

În culturile de rapiță răsărite din zona Lovrin și nu numai, viespea rapiței zboară, se împerechează și depune ouă. Primele larve pot fi observate în culturi. Pe lângă acest dăunător periculos al rapiței, aduc în atenția dumneavoastră și alți dăunători ce pot produce pagube importante și sunt prezenți la această dată în culturi. Este vorba despre larvele de Plutella xylostella (molia verzei), Helicoverpa armigera (omida fructificațiilor), Pieris brassicae (fluturele alb al verzei), Phyllotreta sp. (purici), Brevicoryne brassicae (afide), Trialeurodes vaporariorum (musculița albă).

Toamna caldă încă permite dezvoltarea acestor dăunători. Verificați cu atenție culturile și interveniți dacă densitatea dăunătorilor este mare, iar plantele de rapiță sunt în primele stadii de dezvoltare.

Atrag atenția asupra Helicoverpei armigera deoarece există o încărcătură mare de ouă în culturile de rapiță pe care eu le-am verificat. În acest an, temperaturile foarte ridicate și vremea secetoasă au permis dezvoltarea a trei generații complete și este posibil ca cea de-a patra generație să zboare în această perioadă. Spun asta deoarece în această săptămână s-a înregistrat zbor masiv de fluturi la capcanele Csalomon de la SCDA Lovrin.

306833625 615050200119870 2103450773033676579 n

Chiar dacă monitorizarea în cadrul programului ARC farm intelligence (în colaborare cu compania FMC România) s-a încheiat la sfârșitul lunii august, la Lovrin continuăm monitorizarea zborului dăunătorului Helicoverpa armigera până la finalul zborului (luna octombrie). La data de 12 septembrie 2022 la una dintre capcane au fost capturați 602 fluturi, iar la celelalte trei capcane între 158 și 200 fluturi. Zborul maxim înregistrat se corelează cu activitatea de hrănire, împerechere, depunere ouă, eclozare larve pe care eu le-am observat. Adulții se hrănesc acum prin ierburile de la marginea culturilor, livezilor, lizierelor. La această dată pot fi observate ouăle depuse pe frunzele plantelor de rapiță.

Deși rapița nu se numără printre gazdele preferate ale Helicoverpei, făcând parte din categoria gazdelor minore, ei bine, dacă nu are alternative de hrană, femela va depune ouăle și pe rapiță. În acest moment, larvele de Helicoverpa sunt mai active prin culturile de rapiță decât alți dăunători specifici. Puteți observa toate stadiile, de la ou, larve în diferite stadii de dezvoltare și adulți.

306768040 615049156786641 7670723750097469124 n

 

Viespea rapiței (Athalia rosae)

 

În cele ce urmează, readuc în atenția fermierilor interesați informații cu privire la biologia, ecologia și combaterea viespei rapiței (pesticide actualizate).

Viespea rapiței este o specie oligofagă. Atacă crucifere cultivate, dar și spontane. Pe lângă cruciferele cultivate, dăunătorul se hrănește și cu specii sălbatice de crucifere și umbelifere (Raphanus raphanistrum L., Carum carvi L., Conium maculatum L. etc). Insecta este răspândită în Europa, Asia, America de Nord, Africa.

306945479 615050570119833 5060290541966773985 n

Viespea Athalia rosae este atrasă de plantele din familia Cruciferae datorită substanțelor pe care acestea le conțin (izotiocianați și glucozinolați). Ridichile sunt preferate, dar și alte crucifere ca rapița, muștarul, cresonul, varza etc.

Larvele de Athalia rosae rețin compușii secundari ai plantelor, și anume glucozinolații, în hemolimfa lor. Când sunt atacate, tegumentul lor se rupe relativ ușor și exudă o picătură de hemolimfă („sângerare ușoară”). Aceasta s-a dovedit a fi o apărare eficientă, pe bază de substanțe chimice, împotriva prădătorilor [Boevé J. L. & Schaffner U., 2003; Vlieger L. et al., 2004].

 

Biologia și ecologia dăunătorului

 

În România dăunătorul prezintă două generații pe an. Iernarea are loc sub formă de larvă în cocon în sol la adâncimea de 7 - 15 cm. Primăvara în luna aprilie are loc împuparea. Viespile adulte din prima generație încep să zboare în luna mai - începutul lunii iunie. Corpul adulților are culoare portocalie strălucitoare, excepție făcând capul și părțile laterale. Lungimea corpului poate fi cuprinsă între 5 - 8 mm, după unii autori 9 mm. Aripile sunt galbene la bază și negricioase la marginea frontală și la jumătatea exterioară. Abdomenul este gros, ascuțit la femelă, rotunjit la mascul.

După o perioadă de hrănire pe plante din familia Brassicaceae și Apiaceae, adulții se împerechează și începe depunerea ouălor. O femelă poate depune între 200 - 300 de ouă, fiecare într-o cavitate mică tăiată pe marginea frunzei unei plante gazdă. Zona unde a fost depus un ou poate fi recunoscută ușor deoarece țesutul este deformat. Ouăle sunt mari, ovale, transparente, cu aspect sticlos. Perioada embrionară poate dura între 5 - 12 zile funcție de condițiile de climă, cel mai adesea 6 - 8 zile [Mike Lole, 2010].

Larvele tinere se hrănesc în interiorul frunzei la început, apoi extern pe partea inferioară. În cele din urmă, din frunze rămâne doar scheletul. Corpul larvelor are aspect ridat, culoare închisă sau verde - cenușie și este acoperit cu mici veruci. Larvele au capul mic, negru și 11 perechi de picioare. Partea abdominală este mai deschisă, iar partea dorsală prezintă dungi întunecate. La completa dezvoltare pot ajunge la dimensiuni cuprinse între 18 - 25 mm. Dezvoltarea larvelor poate dura 10 - 13 zile la temperaturi peste 20 grade C [Amiridze N., 1973]. Funcție de condițiile climatice, cel mai adesea, stadiul larvar poate dura între 20 și 50 de zile. În perioada iunie - iulie, larvele ajunse la completa dezvoltare se retrag în sol și își țes coconii unde se vor împupa ulterior. În lunile iulie - august apar adulții primei generații și ciclul se reia [Roșca I. et al., 2011]. În luna septembrie sunt predispuse la atacul culturilor de rapiță răsărite unde adulții vor depune ouă. Larvele generației de toamnă pot produce pagube importante culturilor de rapiță, dar și celor de varză de toamnă.

306804985 615048090120081 7827221482474305734 n

 

Daune produse

 

Larvele proaspăt eclozate au un mod de hrănire minier. După câteva zile consumă epiderma inferioară și mezofilul frunzelor. În urma atacului pot fi observate orificii în frunze (în cazul larvelor mici), iar mai târziu rămân doar nervurile principale. La atacuri masive tinerele plăntuțe se pot usca. Dăunătorul poate consuma florile și silicvele în formare. Generația de toamnă poate produce pagube importante culturilor de rapiță semănate devreme. Plantele răsărite pot fi devorate complet de către larve [Mike Lole, 2010; Roșca I. et al., 2011] .

 

Cum putem monitoriza acest dăunător?

 

Cea mai sigură metodă este observarea directă a zborului adulților. Viespile adulte se hrănesc cu nectar sau cu polen. Pentru a observa din timp prezența viespilor, pot fi folosite capcanele galbene lipicioase. Acestea trebuie amplasate în zona plantelor gazdă. Zborul adulților are loc atunci când temperaturile zilnice sunt de 18 - 19 grade C. Cele mai favorabile sunt temperaturile de 23 - 26 grade C [Amiridze N., 1973].

Este bine ca monitorizarea să înceapă în luna mai și să continue până în luna septembrie. Scopul monitorizării trebuie să fie stabilirea momentului de activitate intensă a adulților. Dacă constatăm zbor masiv este bine să ne îngrijorăm și să verificăm prezența larvelor pe frunze. Plantele gazdă crucifere pot fi utilizate pentru monitorizarea larvelor. De cele mai multe ori, până când vedem larvele, deja frunzele pot fi scheletuite [Mike Lole, 2010].

306832355 615051100119780 8554931504169650839 n

 

Cum putem ține sub control dăunătorul

 

Măsuri de prevenție

Amplasarea noilor culturi de rapiță mai departe de cele vechi este un aspect important. La această măsură se adaugă: distrugerea buruienilor gazdă, respectarea rotației (cu păioase sau rădăcinoase), efectuarea arăturii imediat după recoltarea rapiței, fertilizarea echilibrată, distrugerea resturilor vegetale, înființarea de culturi capcană.

Măsuri chimice de control

De regulă tratamentele trebuie efectuate la un PED de peste 2 larve/plantă [Roșca et al., 2011].

Tratarea semințelor de rapiță și muștar este foarte importantă. Aceste tratamente conferă 6 - 8 săptămâni de protecție pentru dăunători. Din păcate nu se întâmplă așa.

În combaterea chimică trebuie utilizate insecticide omologate pentru rapiță.

Pentru tratamentele la sămânță în România este omologat insecticidul ciantraniliprol. În vegetație pot fi utilizate: deltametrin, cipermetrin, acetamiprid + lambda - cihalotrin, lambda - cihalotrinul, ciantraniliprol, tau - fluvalinatul, acetamiprid, etofenprox, gama - cihalotrin [după PESTICIDE 2.22.9.1, 2022].

306979467 615053183452905 1578019869315408117 n

Măsuri biologice

În combaterea biologică poate fi utilizat Spinosad. Spinosad este un pesticid obținut prin fermentare din bacterii naturale (Saccharopolyspora spinosa). Este foarte eficient la doze mici. Acționează prin ingestie și contact asupra insectelor dăunătoare. Impactul asupra entomofaunei utile este mic comparativ cu alte produse biologice. În comparație cu alte produse biologice asigură un control mai rapid. Controlul prin contact este extrem de eficient, dar prin ingestie, eficacitatea crește de 5 - 10 ori.

Produsele pe bază de Bacillus thuringiensis (B.t.), controlează larvele de lepidoptere foarte bine, dar nu și pe cele de viespe.

 

Bibliografie

Amiridze N., 1973 - Some experimental data to ecology of turnip sawfly. In: Kanchaveli L.A., ed. The proceedings of Georgian Plant Protection Institute, vol. 24. Tbilisi: Georgian NIIZR. 105 - 107 p. (in Russian)
Boevé J. L. & Schaffner U., 2003 - Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104 – 111.
Mike Lole, 2010 - Turnip sawfly: biology and control, Factsheet 11/10, Field Vegetables Project FV 317.
Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011 - Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;
Vlieger L., P. M. Brakefield and C. Müller, 2004 - Effectiveness of the defence mechanism of the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by lizards, Bulletin of Entomological Research (2004) 94, 283–289, DOI: 10.1079/BER2004299.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

 Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Cultura de rapiță este una dintre cele mai profitabile culturi atunci când condițiile de creștere și dezvoltare sunt optime, sau cu alte cuvinte, într-un an agricol bun. Este prima cultură care aduce bani în fermele din România.

Deși este o cultură rentabilă, rapița este în același timp și riscantă. Pentru a evita eventualele probleme, culturii de rapiță îi trebuie acordată o atenție deosebită din partea cultivatorilor. Este o cultură care necesită, încă din toamnă, tratamente fitosanitare atât pentru combaterea dăunătorilor și bolilor, cât și pentru combaterea buruienilor.

Gradul de îmburuienare al acestei culturi poate fi foarte mare, atât cu buruieni monocotiledonate, cât mai ales cu buruieni dicotiledonate, buruieni care concurează plantele de cultură în detrimentul acestora.

 

Fără buruieni, producții ridicate și de foarte bună calitate

 

Cea mai utilizată soluție în toamnă pentru combaterea buruienilor dicotiledonate din cultura de rapiță este reprezentată de erbicidul Galera™ Super al companiei Corteva Agriscience.

Galera™ Super este un erbicid foarte bine cunoscut, care are în compoziție trei substanțe active cu două moduri de acțiune diferite, atât sistemic, cât și de contact (240 g/l clopiralid + 80 g/l picloram + 40 g/l aminopiralid). Este cea mai sigură metodă de a combate buruienile dicotiledonate, atât anuale, cât și perene, din cultura de rapiță.

Galera™ Super este cea mai eficientă soluție în combaterea turiței (Galium aparine), buruiană care reprezintă cea mai mare provocare atât în perioada de vegetație a culturii, concurând planta, cât și la recoltarea și valorificarea producției. Galera™ Super are o eficacitate foarte mare (>90%) în combaterea pălămidei (Cirsium arvense), mușețelului (Matricaria spp.), samulastrei de floarea soarelui, lobodei (Chenopodium album), macului (Papaver rhoeas), susaiului (Sonchus arvensis), cornuților (Xanthium strumarium) și altor buruieni dicotiledonate prezente în cultură.

Galera™ Super este prima alegere a fermierilor din România pentru controlul buruienilor dicotiledonate din cultura de rapiță datorită unor avantaje, precum: eficacitate ridicată, independentă de umiditatea din sol la aplicare, are flexibilitate în aplicare, putându-se aplica toamna sau primăvara, este selectiv pentru planta de cultură și are cel mai mare spectru de buruieni dicotiledonate combătute.

 

Articol scris de: ALEXANDRA PETCUCI, Category Marketing Manager Herbicides Corteva Agriscience România și Moldova

Publicat în Protecția plantelor

În această perioadă, la capcanele cu feromoni și momeli alimentare se înregistrează zbor maxim al dăunătorului Helicoverpa armigera (omida fructificațiilor) - generația a II-a, în următoarele zone: Banat (5 locații), Crișana (patru locații), Oltenia (o locație), Dobrogea (6 locații), Moldova (2 locații).

Secetă cumplită în acest an în toată țara. Secetă și în Banat. La Lovrin, ne-am bucurat de 181 mm precipitații din luna ianuarie și până la data de 4 august 2022 (în zona Lovrin, multianuala este de 540 mm). Porumbul de pe teritoriul Stațiunii de Cercetare - Dezvoltare Agricolă (SCDA) Lovrin nu este în totalitate compromis, dar producțiile vor fi mici în acest an.

Porumb la SCDA Lovrin, 4 august 2022

Porumb la SCDA Lovrin la data de 4 august 2022

 

Monitorizarea dăunătorilor din cultura de porumb

 

Chiar dacă este secetă cumplită, continuăm monitorizarea dăunătorilor importanți din cultura de porumb. La fel ca și anul trecut, SCDA Lovrin în parteneriat cu compania FMC Agro România monitorizează zborul adulților de Helicoverpa armigera în mai multe zone din țară cu ajutorul aplicației ArcTM Farm Intelligence, pe care fermierii o puteți descărca în mod gratuit. Scopul acestui program de prognoză și avertizare este de a stabili momentele optime de combatere ale dăunătorului, aceasta fiind foarte importantă deoarece vă ajută să vă eficientizați tratamentele fitosanitare în culturile dumneavoastră. Astfel, cheltuielile cu pesticidele vor fi mai mici, iar mediul va fi protejat. În cadrul acestui proiect, eu, ca specialist, am sarcina să validez capcane din următoarele zone ale României: Banat, Crișana, Oltenia, Moldova, Dobrogea și Transilvania.

Capturi de fluturi la data de 4 august 2022

Capturi de fluturi la data de 4 august 2022

În acest an, a doua generație de Helicoverpa armigera din zona Banat s-a dovedit a fi mai numeroasă decât cea de anul trecut. Vremea caldă, secetoasă a favorizat înmulțirea dăunătorului. De altfel, în ultimii ani, creșterea temperaturilor medii cu un grad și chiar mai mult decât mediile multianuale au influențat pozitiv dezvoltarea dăunătorului Helicoverpa armigera (Balogh et al., 2005). Pe de altă parte, dacă temperaturile depășesc 370C timp de mai multe zile consecutiv, dezvoltarea acestuia este stânjenită. Ouăle și tinerele larve pot muri din cauza uscăciunii și a temperaturilor ridicate.

Capturi din localitatea Variaș (Timiș) la data de 5 august 2022 (280 fluturi). Foto: ACS ing. Klaudia Kincel 

Capturi din localitatea Variaș Timiș la data de 5 august 2022 280 fluturi

Temperaturile ridicate din lunile iunie și iulie au influențat zborul insectei, înregistrându-se oscilații importante ale numărului de capturi, apărând probleme în stabilirea maximului de zbor în acest an. Apreciez că, în zona Lovrin, zborul celei de-a doua generații de H. armigera a început în forță la începutul lunii iulie, a înregistrat o creștere semnificativă a capturilor la data de 18 iulie urmată de o mică perioadă de regresie (cauzată probabil de temperaturile maxime extrem de ridicate înregistrate după această dată, respectiv 410C; 39,90C; 38,60C), după care a culminat cu un număr maxim de adulți capturați la data de 1 august 2022, când, la capcanele Csalomon s-a înregistrat un număr record de fluturi (991 în trei zile). Considerăm că, la 1 august 2022, în zona Banat s-a înregistrat maximul de zbor al celei de-a doua generații. Curba maximă de zbor indică o activitate intensă a dăunătorului (împerechere, depunere ouă, eclozare larve).

Capcana automată care, din păcate nu a dat rezultatele scontate. Doar 3 capturi la data de 4 august comparativ cu capcana Csalomon unde s-au înregistrat 325

Capcana automată care din păcate nu a dat rezultatele scontate. Doar 3 capturi la data de 4 august comparativ cu capcana Csalomon unde s au înregistrat 325

La data de 4 august 2022, curba de zbor este în scădere, la capcane înregistrându-se 617 fluturi capturați. Capcana automată pentru monitorizarea adulților de H. armigera nu a confirmat din păcate, numărul de capturi înregistrat neputând fi utilizat în stabilirea curbelor de zbor și a momentelor optime de combatere.

Datele obținute cu ajutorul capcanelor (curbele de zbor) și suma de temperaturi înregistrată la Lovrin (9900C) se corelează cu prezența larvelor de Helicoverpa armigera (gen. II) în culturile de porumb și nu numai. Un control efectuat într-o cultură de floarea-soarelui, a pus în evidență prezența larvelor de vârsta a II-a în calatidii. Recomand controale în culturile de floarea-soarelui, soia, tomate, ardei, vinete, sfeclă, cânepă, unde dăunătorul poate fi prezent.

Larvă tânără de Helicoverpa armigera în calatidiu de floarea soarelui. Deranjată, a ieșit la suprafață. Foto la data de 4 august 2022

Larvă tânără de Helicoverpa armigera în calatidiu de floarea soarelui. Deranjată a ieșit la suprafață. Foto la data de 4 august 2022

După cum deja cunoașteți, generația a II-a de Helicoverpa armigera poate produce daune considerabile la porumb. Putem vedea în câmp, acum, toate stadiile dăunătorului: adult, ouă, larve și chiar pupe. Știuleții de porumb sunt atacați în procent ridicat. La vârful știuleților, în zona mătăsii pot fi observate larve foarte tinere (vârsta I și II), dar și larve mai mature. Larvele din prima și a doua vârstă consumă mătasea. Larvele mai mature atacă știuleții în curs de dezvoltare, iar boabele sunt consumate [Hosseininejad et al., 2015]. În zonele atacate se instalează de regulă fungii micotoxigeni din genul Fusarium (Fusarium verticillioides, F. graminearum) și Aspergillus (Aspergillus flavus, A. parasiticus). Din păcate, la această dată, fungii menționați sunt prezenți pe știuleți, mai devreme în acest an, comparativ cu anul trecut. Fusarium verticillioides și Aspergillus flavus sunt fungi iubitori de temperaturi ridicate. Ei se dezvoltă foarte bine la temperaturi ridicate, comparativ cu alți patogeni care se opresc din evoluție.

Adult de Helicoverpa armigera pe frunză de porumb la data de 3 august 2022. Foto: ing. Alina Surdulescu (absolventă USAMVB Timișoara, specializarea Protecția Plantelor), FMC România

Adult de Helicoverpa armigera pe frunză de porumb la data de 3 august 2022

Femelă de Helicoverpa armigera care a depus ouă în capcana delta (foto la 4 august 2022)

Femelă de Helicoverpa armigera care a depus ouă în capcana delta foto la 4 august 2022

Larvă de Helicoverpa armigera pe știulete la data de 1 august 2022. Foto: ACS, ing. Klaudia Kincel 

Larvă de Helicoverpa armigera pe știulete la data de 1 august 2022jpg

Pupă de Helicoverpa armigera la data de 1 august 2022. Mai rar se împupează pe plantă sau în plantă. Împuparea de regulă are loc în sol. Fluturașul nu a supraviețuit. Foto: Klaudia Kincel, asistent cercetare SCDA Lovrin (Laborator Protecția Plantelor).

Pupă de Helicoverpa armigera la data de 1 august 2022. Mai rar se împupează pe plantă sau în plantă. Împuparea de regulă are loc în sol

 

Recomandări de combatere

 

În perioada 5 – 10 august 2022 se impune efectuarea unui tratament împotriva dăunătorului Helicoverpa armigera (acolo unde este cazul).

Larvele tinere pot fi omorâte mult mai ușor comparativ cu cele mature care sunt mai rezistente la insecticide. Larvele de Helicoverpa armigera trec prin șase stadii de dezvoltare. Cele din stadiile I și II se hrănesc cu frunze fragede, iar pagubele nu sunt vizibile. Din stadiul III, larvele produc daune vizibile. Dimensiunea larvelor din stadiul III este cuprinsă între 8 - 13 mm. În acest stadiu ele pot fi ucise cu ușurință. Stadiile cele mai dăunătoare sunt V și VI, când larvele sunt mari, agresive și rezistente la insecticide sau bioinsecticide.

Mătase retezată

Mătase retezată

Înainte de efectuarea tratamentului verificați culturile. Decizia de efectuare a tratamentelor trebuie luată în urma unui control fitosanitar. Dăunătorul poate fi combătut cu metode chimice, dar și biologice în cazul culturilor ecologice.

 

Controlul chimic

 

Utilizarea insecticidelor în gestionarea acestui dăunător este extrem de dificilă din cauză că larvele sunt ascunse în organele atacate. Există studii care arată că, deși au fost aplicate insecticide în sistem intensiv (tratamente la intervale scurte de timp), totuși larvele nu au putut fi suprimate [Reay-Jones et Reisig, 2014].

În general, Helicoverpa poate fi ucisă cu aproape toate insecticidele. Totuși, s-a constat o rezistență a Helicoverpei armigera la insecticidele din grupa piretroizilor. După Yang et al. (2013), H. armigera a dezvoltat în timp rezistență la insecticidele cu spectru larg, în special la cele din grupa piretroizilor. Clasele mai noi de insecticide (spinosinele, diamidele) au asigurat un bun control al H. armigera [Perini et al., 2016; Durigan et al., 2017; Durigan, 2018]. Se recomandă alternarea insecticidelor din grupe chimice diferite pentru a încetini dezvoltarea rezistenței [Ahmad et al., 2019].

Aspergillus flavus prezent pe știuleți la 4 august 2022. Asta nu este bine deloc

Aspergillus flavus prezent pe știuleți la 4 august 2022. Asta nu este bine deloc

Combaterea chimică se poate face cu insecticide pe bază de: clorantraniliprol (CORAGEN 20 SC), clorantraniliprol + lambda - cihalotrin (după Pesticide 2.22.7.1). Aceste produse sunt prietenoase cu entomofagii, au efect ovicid și larvicid foarte bun și pot fi aplicate și la temperaturi mai ridicate (chiar și la 340 C). Respectați dozele și momentele optime de aplicare.

 

Controlul biologic

 

Pot fi utilizate viespi parazite oofage din genul Trichogramma, dar și larve de Chrysopa carnea. Dintre entomopatogeni amintesc: virusul poliedrozei nucleare (NPV - nucleopoliedrovirus), fungii Beauveria bassiana, Metarhizium spp., Nomuraea spp., bacteria Bacillus thuringiensis (Bt). Studiile efectuate arată că, fungul entomopatogen Nomuraea rileyi a dus la mortalitatea larvelor de Helicoverpa armigera în procente mari, cuprinse între 90 până la 100%. Beauveria bassiana a dus la reducerea cu 10% a daunelor. De asemenea, formulările de Bacillus thuringiensis (Bt) sunt utilizate cu succes în controlul Helicoverpei. Tratamentele cu entomopatogeni și mai ales cele pe bază de Bacillus thuringiensis ar trebuie efectuate seara. Tratamentele efectuate seara s-au dovedit mai eficiente decât cele executate în alte momente din zi [Tang 2003, Nguyen et al., 2007; Luo et al., 2014].

În mod natural, larvele pot fi infectate de entomopatogenii amintiți. Infecțiile cu NPV apar adesea în câmp, uneori la sfârșitul lunii august fiind observate larve moarte pe mătase sau știuleți. Larvele atacate de NPV au aspect de flașerii (au culoare neagră și se lichefiază înainte de dezintegrare). O altă boală este produsă de un ascovirus și este răspândită de viespile parazite.

Stânga - tăciune bășicat. Dreapta - Fusarium sp.

Stânga tăciune bășicat

Disponibile pentru controlul larvelor de Helicoverpa armigera sunt preparate pe bază de NPV și Bacillus thuringiensis. În România este omologat un produs pe bază de Bacillus thuringiensis subs. Kurstaki, tulpina ABTS - 351. Produsul comercial pe bază de NPV este selectiv, infectând doar larvele de Helicoverpa armigera și punctigera. Este inofensiv pentru oameni, animale sălbatice și insecte utile.

 

Efectuarea tratamentelor

 

Primul tratament se aplică la avertizare. Când aceasta a fost lansată, este timpul să efectuați un control în culturi. Verificați într-un lan mai mult de 100 de plante. Larvele de Helicoverpa armigera pot fi văzute la vârful știuleților, pe mătase și sub pănuși.

Decizia de a utiliza insecticide sau bioinsecticide pentru combaterea acestui dăunător trebuie luată doar după un control fitosanitar serios al culturilor, dar nu trebuie să întârzie mai mult de 2 - 3 zile de la momentul primirii avertizării.

Repetarea tratamentului se recomandă după 7 - 8 zile acolo unde densitatea dăunătorului este mare.

Este bine ca tratamentele să fie efectuate atunci când larvele pot fi ucise cu ușurință.

Atac la inflorescență de cânepă industrială

Atac la inflorescență de cânepă industrială

Momente recomandate:

  • Când larvele sunt mici și foarte mici, între 1 - 7 mm (pot fi omorâte cu doze mici de insecticid);

  • Când se hrănesc la suprafața organelor sau în timpul deplasării (pot fi ucise mai ușor);

  • Înainte de a pătrunde în inflorescențe, știuleți, păstăi, capsule (sunt mai greu de omorât sau chiar imposibil).

porumb atacat

 

Bibliografie

Ahmad, M., B. Rasool, M. Ahmad, and D. A. Russell, 2019 - Resistance and synergism of novel insecticides in field populations of Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan J. Econ. Entomol. 112: 859 – 871.
Balogh P., Takács J., Nádasy M. & Márton L., 2005 - The effect of the weather on the light-trap’s data of the cotton bollworm in Hungary. Cereal Res. Commun. 33: 427 – 430.
Durigan, M. R. 2018 - Resistance to pyrethroid and oxadiazine insecticides in Helicoverpa armigera (Lepidoptera: Noctuidae) populations in Brazil. Ph.D. dissertation. University of Sao Paulo, ESALQ, Brazil.
Durigan, M. R., A. S. Corrêa, R. M. Pereira, N. A. Leite, D. Amado, D. R. de Sousa, and C. Omoto, 2017 - High frequency of CYP337B3 gene associated with control failures of Helicoverpa armigera with pyrethroid insecticides in Brazil. Pestic. Biochem. Physiol. 143: 73 – 80.
Hosseininejad A. S., B. Naseri, and J. Razmjou, 2015 - Comparative feeding performance and digestive physiology of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae - feed 11 corn hybrids. Journal of Insect Science 15(12): 6 pp. DOI: 10.1093/jisesa/ieu179.
Luo, S., S. E. Naranjo, and K. Wua, 2014 - Biological control of cotton pests in China. Biol Control 68: 6–14
Nguyen, T. H. N., C. Borgemeister, H. Poehling, and G. Zimmermann, 2007 - Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biochem. Sci. Technol. 17: 853–864.
Perini, C. R., J. A. Arnemann, A. A. Melo, M. P. Pes, I. Valmorbida, M. Beche, and J. V. C. Guedes, 2016 - How to control Helicoverpa armigera in soybean in Brazil? What we have learned since its detection. Afr. J. Agric. Res. 11: 1426 – 1432.
Reay - Jones, F. P. F., and D. D. Reisig, 2014 - Impact of corn earworm on yield of transgenic corn producing Bt toxins. J. Econ. Entomol. 107: 1101–1109.
Tang,  L., 2003 - Potential application of the entomopathogenic fungus, Nomuraea rileyi, for control of the corn earworm, Helicoverpa armigera. Entomologia Experimentalis et Applicata 88: 25 – 30.
Yang, Y., Y. Li, and Y. Wu, 2013 - Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J. Econ. Entomol. 106: 375 – 381.

Articolul poate fi accesat și pe www.scdalovrin.com la secțiunea „Articole de informare”.

 

Articol scris de: dr. ing. Otilia Cotuna, CSIII Laborator de Protecția plantelor SCDA Lovrin, șef lucrări USAMVB Timișoara

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Din acest an, Stațiunea de Cercetare-Dezvoltare Agricolă (SCDA) Lovrin a extins monitorizarea dăunătorilor în pomicultură și legumicultură.

În livada de la stațiune am amplasat capcane cu feromoni pentru Cydia pomonella (viermele mărului), Leucoptera scitella (minierul circular al frunzelor), Cossus cossus (sfredelitorul tulpinilor), Zeuzera pyrina (sfredelitorul ramurilor), Synanthedon myopaeformis (sfredelitorul mare al mărului), Cydia funebrana (viermele prunelor).

1

În sectorul legumicol au fost plantate capcane pentru Tuta absoluta (molia tomatelor), Plutella xylostella (molia verzei), Helicoverpa armigera (omida fructificațiilor), Autographa gamma (buha gamma).

Rezultatele monitorizării le vom împărtăși cu dumneavoastră, așa cum facem de obicei.

 

Un musafir nepoftit a ajuns în livada de prun (anul I) a SCDA Lovrin

 

Musafir care se hrănește cu frunze și a produs daune destul de consistente aparatului foliar al pomilor. Acest mic gândăcel este portocaliu și a fost identificat de mine ca fiind Clytra laeviuscula (determinare parțială, sper că nu greșesc). Bănuiesc că vine din perdeaua forestieră din apropierea livezii. Denumirea populară a acestui gândac este „gândacul de furnici”.

Clytra laeviuscula, gândacul de furnici. Se hrănește cu frunze de foioase. Atacă în special lăstarii tineri

Clytra laeviuscula gândacul de furnici. Se hrănește cu frunze de foioase. Atacă în special lăstarii tineri

Ciclul de viață al gândăcelului este chiar interesant. Adulții sunt polifagi și se hrănesc cu polen și frunze de foioase (salcie, mesteacăn, frasin, păducel etc). Preferă plopii, sălciile și păducelul. Pot fi văzuți pe speciile preferate în lunile mai până în august. Femela înconjoară ouăle într-un strat protector format din materii fecale. Ouăle astfel protejate sunt transportate de femele în cuibul furnicilor. Gazde ale larvelor sunt furnici din genurile Formica, Lasius și Camponotus, mai rar Aphaenogaster. Larvele pot ajunge și singure în furnicar. Viața lor nu este prea bine cunoscută. Se bănuiește că sunt erbivore, dar și carnivore. Se cunoaște că se hrănesc cu resturi din hrana furnicilor gazdă, deși pot consuma și frunze (studii în laborator). Când sunt atacate de furnici se retrag în camera protectoare, unde se și împupează când ajung la maturitate. După apariție, adulții ies imediat afară pentru a scăpa de atacul furnicilor. Concluzia e că acest gândac are un ciclu interesant (Agrain et al., 2015).

Frunze de prun roase de acest frumos gândăcel nepoftit

Frunze de prun roase de acest frumos gândăcel nepoftit

 

Care este potențialul de dăunare pentru pomii fructiferi?

 

În ultimii ani au fost publicate câteva studii care arată potențialul de dăunare al acestui gândăcel. Un studiu pe salcie energetică în Ucraina arată că acesta a produs defoliere în procent de 50% până la 70% (Stefanovska et al., 2015). Iată că, trebuie să fim atenți la acest gândăcel.

În livada tânără de prun de la Lovrin, Clytra laeviuscula a produs deja daune frunzelor, în procent destul de ridicat. Din acest motiv s-a intervenit chimic pentru eliminarea făptașului nepoftit.

292965189 2223656291127010 499111217903846399 n

Bibliografie

Agrain F. A., Buffington M. L., Chaboo C. S., Chamorro M. L., Scholler M., 2015, Leaf beetles are ant - nest beetles: the curios life of the juvenile stages of acse - bearers (Coleoptera, Chrysomelidae, Cryptocephalinae). In: Jolivet P., Santiago - Blay J., Schmitt M. (Eds) Research on Chrysomelidae 5. Zookeys 2015 (547): 133 - 164.

 

Articol scris de: DR. ING. OTILIA COTUNA, CSIII Laborator de protecția plantelor SCDA LOVRIN, Șef lucrări USAMVB Timișoara

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Horticultura

Condițiile de climă și sol influențează creșterea și dezvoltarea culturilor, dar în aceeași măsură, crește și riscul apariției bolilor și dăunătorilor. La cultura de rapiță, Putregaiul alb (Sclerotinia sclerotiorum) este de departe cea mai pagubitoare boală. Primăverile calde și umede, densitatea ridicată, prezența în rotație a unor specii sensibile, sunt probleme des întâlnite în fermele de la noi din țară.

Corteva Agriscience introduce în cultura de rapiță, prin noua genetică, un concept inovator Sclerotinia Protector. PT303 este un hibrid unic pe piața din Europa ce combină un grad ridicat de toleranță la Sclerotinia cu productivitatea excelentă și caractere agronomice superioare, iar rezultatul este un produs ce nu poate lipsi din nicio fermă ce dorește performanță la cultura de rapiță.

O reală problemă o reprezintă rotația scurtă practicată în foarte multe ferme, unde rapița revine după un an de cereale păioase și în rotație scurtă cu floarea-soarelui, soia și mazărea. Faptul că scleroții produși de Slerotinia sclerotiorum pot rezista în sol 7-8 ani și în condiții prielnice pot produce pagube însemnate nu doar pentru cultura de rapiță, ci și pentru culturile ce vor veni în următorii ani pe acel teren, reprezintă o preocupare importantă a multor fermieri.

Combaterea chimică a acestei boli foarte păgubitoare este limitată și necesită atenție deosebită la momentul aplicării fungicidului, iar de cele mai multe ori nu se poate interveni la timp din cauza precipitațiilor, astfel că eficiența tratamentului este foarte redusă, infecția neputând fi eradicată în totalitate. Singura soluție reală este utilizarea hibrizilor Sclerotinia Protector.

Primul hibrid este PT303 ce va realiza producții constante anual, fără a fi impactat de acest agent patogen și care lasă un sol cu încărcătură mai mică de scleroți, unde vom putea cultiva în continuare fără riscuri culturile dorite.

Toleranța genetică este un aspect foarte important de luat în calcul în alegerea hibrizilor ce urmează să-i cultivăm. Alături de productivitate și stabilitate, ea asigură obținerea unor producții ridicate în anii problematici, când alte soluții nu dau randament.

De asemenea, un aspect foarte important de menționat este și pretabilitatea hibridului PT303 pentru agricultura organică/ecologică, fiind singura soluție de a reduce infestarea plantelor cu Sclerotinia și multiplicarea scleroților în viitor. Corteva oferă prin portofoliul actual, soluții reale fermierilor ce s-au integrat în agricultura organică.

Pentru siguranța culturii de rapiță, hibridul marca Pioneer® PT303 Sclerotinia Protector este alegerea perfectă.

  

Articol scris de: ANDREI CIOCOIU, Category Marketing Manager Seeds Corteva Agriscience România & Moldova

Publicat în Cultura mare

newsletter rf

Publicitate

banner bkt

ATS25 300X250

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

03 300px Andermat Mix 2

T7 S 300x250 PX

Banner Bizon Profesional Agromedia 300x250 px

GAL Danubius Ialomita Braila

GAL Napris

Revista